» » Сцепление генов. Сцепленное наследование Полное сцепленное наследование генов

Сцепление генов. Сцепленное наследование Полное сцепленное наследование генов

Сцепленное наследование генов

В начале XX в., когда генетики стали проводить множество экспериментов по скрещиванию на самых различных объектах (кукуруза, томаты, мыши, мушки дрозофилы, куры и др.), обнаружилось, что не всегда проявляются закономерности, установленные Менделем . Например, не во всех парах аллелей наблюдается доминирование. Вместо него возникают промежуточные генотипы, в которых участвуют обе аллели. Обнаруживается также много пар генов, не подчиняющихся закону независимого наследования генов, особенно если пара аллельных генов находится в одной и той же хромосоме, т. е. гены как бы сцеплены друг с другом. Такие гены стали называть сцепленными .

Механизм наследования сцепленных генов, а также местоположение некоторых сцепленных генов установил американский генетик и эмбриолог Т. Морган . Он показал, что закон независимого наследования, сформулированный Менделем , действителен только в тех случаях, когда гены, несущие независимые признаки, локализованы в разных негомологичных хромосомах. Если же гены находятся в одной и той же хромосоме, то наследование признаков происходит совместно, т. е. сцепленно. Это явление стали называть сцепленным наследованием , а также законом сцепления или законом Моргана .

Закон сцепления гласит: сцепленные гены, расположеные в одной хромосоме, наследуются совместно (сцепленно) .

Примеров сцепленного наследования генов известно очень много. Например, у кукурузы окраска семян и характер их поверхности (гладкие или морщинистые), сцепленные между собой, наследуются совместно. У душистого горошка (Lathyrus odoratus) сцепленно наследуются окраска цветков и форма пыльцы.

Все гены одной хромосомы образуют единый комплекс - группу сцепления . Они обычно попадают в одну половую клетку - гамету и наследуются вместе.

Группа сцепления — все гены одной хромосомы. Число групп сцепления равно количеству хромосом в гаплоидном наборе. Например, у человека 46 хромосом — 23 группы сцепления, у гороха 14 хромосом — 7 групп сцепления, у плодовой мушки дрозофилы 8 хромосом — 4 группы сцепления.

Гены, входящие в группу сцепления, не подчиняются третьему закону Менделя о независимом наследовании. Однако полное сцепление генов встречается редко. Если гены располагаются близко друг к другу, то вероятность перекреста хромосом мала и они могут долго оставаться в одной хромосоме, а потому будут передаваться по наследству вместе. Если же расстояние между двумя генами на хромосоме велико, то существует большая доля вероятности, что они могут разойтись по разным гомологичным хромосомам. В этом случае гены подчиняются закону независимого наследования.

Неполное сцепление генов. При анализе наследования сцепленных генов было обнаружено, что иногда сцепление может нарушаться в результате кроссинговера, происходящего во время мейоза при образовании половых клеток.

Если место разрыва хромосом во время обмена участками расположено между генами А (а) и В(b), то появятся гаметы Ab и аВ , а в потомстве образуются четыре группы фенотипов, как при несцепленном наследовании генов. Отличие заключается в том, что численное соотношение фенотипов не будет соответствовать соотношению 1:1:1:1, как при дигибридном анализирующем скрещивании.

Чем дальше друг от друга находятся гены в хромосоме, тем выше вероятность перекрёста между ними, тем больше процент гамет с перекомбинированными генами, а следовательно, и больше процент особей, отличных от родителей. Такое явление называют неполным сцеплением генов .

На рисунке - Наследование при неполном сцеплении генов (на примере скрещивания двух линий дрозофил, где А - нормальные крылья, а - зачаточные крылья, В - серый цвет тела, в - черный цвет тела ).

Полное сцепление генов. Чем ближе друг к другу находятся гены в хромосоме, тем меньше вероятность перекрёста между ними. Если гены расположены очень близко друг к другу (рядом), то перекрёста между ними обычно не наблюдается. В этом случае говорят о полном сцеплении генов .

Гены, расположенные в одной и той же хромосомной паре, называются "сцепленными". Сцепленные гены не подчиняются второму закону Менделя; они не дают свободной рекомбинации друг с другом. У норки мутантные гены черных и кареглазых пастелей являются сцепленными; такими же, разумеется, являются их нормальные аллеломорфы. Сцепленные с полом гены сцеплены с определяющими пол генами в хромосоме; естественно, они также сцеплены и друг с другом.

У человека мутантные гены дальтонизма и гемофилии связаны с полом (см. гл. 15) и, следовательно, сцеплены друг с другом. Случается, что оба мутантных гена могут оказаться в одной семье. Такие семьи бывают двух различных типов.

Тип I. В этих семьях два мутантных гена соединились в итоге брака между людьми, несущими тот или иной ген. Гены, таким образом, пребывают в различных хромосомах; выражаясь языком генетики, они сцеплены в процессе "отталкивания" (рис. 62, I , первый ряд).

Тип II. В этих семьях мутация, приводящая к одной из таких ненормальностей, например гемофилии, совершается в хромосоме, которая уже несет другой мутантный ген. Оба мутантных гена находятся в одной и той же X-хромосоме; они сцеплены в процессе "притяжения" (см. рис. 62, II , первый ряд).

Большинство женщин в обоих типах семей будут фенотипически нормальны, но многие окажутся гетерозиготными по одному или обоим мутантным генам (см. рис. 62, второй ряд), и эти женщины могут иметь больных сыновей. Так как сын наследует только одну X-хромосому матери, больные сыновья гетерозигот I типа страдают или гемофилией, или дальтонизмом, но не имеют оба заболевания одновременно (см. рис. 62, третий ряд), в то время как больные сыновья гетерозигот II типа имеют оба заболевания одновременно. Однако могут быть и исключения. Они представлены в четвертом ряду рис. 62.

Изредка женщина, несущая ген дальтонизма в одной X-хромосоме и ген гемофилии в другой (тип I ), может родить сына, страдающего обоими заболеваниями; или же женщина, несущая гены обоих заболеваний в одной X-хромосоме (тип II ), может родить сына, страдающего только одним из этих заболеваний.

Нетрудно заметить, что эти исключения аналогичны таковым у детенышей паломино-норки, соединивших в одной хромосоме два гена, которые у их родителей находились в различных хромосомах-партнерах. Во всех этих случаях мутантный ген, по-видимому, перемещается из одной хромосомы к ее партнеру. Этот процесс называется кроссинговером; он допускает ограниченное число рекомбинаций между генами, которые не подчиняются второму закону Менделя.

Явление кроссинговера породило большое количество экспериментов и предположений на протяжении десяти лет, но до сих пор оно остается непонятым до конца. Однако последствия кроссинговера хорошо известны и в любом случае могут быть предсказаны в такой же степени, как и последствия законов Менделя.

На рис. 63 показаны результаты кроссинговера для двух хромосом, вернее, для генов, находящихся в них.

В исходной паре хромосом (a ) один из партнеров заштрихован для отличия его от другого, б и в представляют собой два варианта многочисленных типов кроссинговера, которые могут наблюдаться у пары а. В обоих случаях произошел обмен кусками между хромосомами-партнерами. В случае б обмен получился концевыми кусками, и для этого потребовалась только одна точка (x ) обмена; в случае в произошел обмен средними кусками, и для этого потребовались две точки (x и y ).

Наиболее важная черта кроссинговера - точное соответствие между точками обмена у хромосом-партнеров. Если бы не было столь точного соответствия, то хромосомы-партнеры вскоре перестали бы быть равными по длине; более того, число генов в них перестало бы быть одинаковым, и хромосомы с очень большим или малым количеством генов могли попасть в круговорот, а это привело бы к появлению уродств и смерти.

Если, например (рис. 64), точка обмена в одной из хромосом попадет между 4-м и 5-м генами, а в другой - между 6-м и 7-м генами, то в результате обмена концевыми кусками получится одна хромосома с утерей 5-го и 6-го генов, а хромосома-партнер будет иметь эти гены в двойном количестве.

Наиболее распространена точка зрения, что кроссинговер происходит в начале мейоза, когда хромосомы-партнеры не только тесно и точно соприкасаются, но и обвиваются одна вокруг другой; вследствие напряжения от скручивания может произойти разрыв хромосом в идентичных точках и соединение вновь с кусками между партнерами. Высказываются и другие предположения, но до настоящего времени нет единой точки зрения на этот вопрос.

Обмен кусками между хромосомами-партнерами легко объясняет кроссинговер в его генетическом проявлении независимо от того, какой механизм лежит в его основе.

На рис. 65 показано, как можно объяснить рождение сына с дальтонизмом и гемофилией у женщины, которая несет гены этих аномалий в противоположных хромосомах (I ), ли сына только с одной аномалией у женщины, имеющей оба гена в одной и той же хромосоме (II ).

Если локализация точек обмена определяется случайностью, нужно ожидать, что кроссинговер между генами, значительно удаленными друг от друга в хромосоме, будет происходить чаще, чем между близко расположенными генами; это действительно так и происходит. Когда два гена расположены друг к другу очень близко, вероятность того, что точка обмена попадает между ними, невелика, и кроссинговер наблюдается редко. Чем больше расстояние между двумя генами, тем больше вероятность того, что точка обмена расположится между ними, и тем выше встречаемость кроссинговера. Два гена могут комбинироваться так же свободно, как если бы они находились в различных парах хромосом, в тех случаях, когда расстояние между ними больше какой-то определенной величины.

Исторически и логически это положение ставит повозку впереди лошади. Именно в результате открытия генетического сцепления стало возможным привязать гены к хромосомным парам, тогда как открытие кроссинговера позволило измерить расстояние между генами в единицах частоты встречаемости кроссинговера. Сказать, что два гена расположены друг от друга на расстоянии 10 единиц кроссинговера, проще и короче, чем говорить, что гетерозигота этих двух генов образует 10% кроссинговерных гамет.

Когда пара хромосом несет несколько или много известных генов, эксперименты с кроссинговером можно использовать для получения хромосомной "карты", которая показывает расположение генов и их относительные расстояния друг от друга.

У Drosophila melanogaster гены красных глаз (St , рецессивный), торчащих щетинок (Sb , доминантный) и изогнутых крыльев (Cu , рецессивный) расположены в третьей хромосоме, одной из двух длинных аутосом. Расстояние по кроссинговеру между St и Sb составляет 14%, а между Cu и Sb равно 8%. Одних этих данных недостаточно для того, чтобы представить себе расположение трех генов, так как они могут находиться в двух различных положениях (рис. 66, I и II ). Однако когда станет известно, что расстояние по кроссинговеру между St и Cu равно 6, а между Cu и Sb равно 8, то порядок расположения генов St , Cu и Sb устанавливается точно (см. рис. 66, III ). Таким же методом на карте может быть нанесено положение и других генов. В настоящее время карта этой хромосомы дает расположение более 150 генов. Тот факт, что гены всегда можно нанести на карту таким приемом, является доказательством их линейного расположения вдоль хромосомы. Если бы расположение было другим, например некоторые гены выступали из хромосомы в боковые ветви, то расстояние между тремя генами нельзя было бы всегда выражать так, что одно расстояние представляет собой сумму двух других (рис. 67). В действительности оно обычно оказывается несколько меньшим этой суммы; но эта второстепенная деталь может быть объяснена, и на этом здесь не стоит останавливаться.


Рис. 66. Как гены "наносятся" на карту. Расстояние между St и Sb равняется 14% кроссинговера; расстояние между St и Сu равно 8% кроссинговера; расстояние между St и Сu равно 6% кроссинговера. Следовательно, порядок расположения генов будет таким, как показано в III строке

Для селекционера-животновода значение кроссинговера заключается в возможности рекомбинаций, т. е. соединения или разделения сцепленных генов.

Можно ли этого достигнуть легко и экономично, зависит от расстояния между генами, которые интересуют селекционера. Когда гены достаточно далеко удалены друг от друга, сцепление не является препятствием для рекомбинаций. Когда сцепленные гены значительно сближены, чтобы можно было уловить сцепленность, селекционер сначала должен выяснить, достаточно ли у него возможностей для осуществления задуманного плана разведения.

Специалист, желающий скрестить породу мышей с розовыми глазами 1 и породу шиншилла, чтобы получить породу мышей цвета шиншилла с розовыми глазами, может достигнуть этого без особого труда и затрат; так как расстояние кроссинговера между генами розовых глаз и мехом цвета шиншилла составляет около 15%, поэтому гетерозиготы, несущие эти гены, при отталкивании образуют около 15% гамет, несущих эти гены в протяжении. С другой стороны, любитель, разводящий мышей и желающий получить породу мышей с ослабленной окраской шерсти и нормальными ушами от породы со светлой окраской шерсти и короткими ушами, должен прежде обратиться к руководству по генетике мышей, чтобы выяснить, будет ли он в состоянии это осуществить, так как гены светлой шерсти и коротких ушей сцеплены очень тесно друг с другом, и если мышь несет оба гена в сцеплении в одной хромосоме и оба нормальных аллеломорфа в другой, то только 1 гамета приблизительно на 1000 будет нести ген светлой шерсти без гена коротких ушей.

1 (Ген розовых глаз отличается от гена альбиноса, обусловливающего белый цвет меха и розовый цвет глаз, и является фактически аллеломорфом гена шиншиллы )

02-Сен-2014 | Нет комментариев | Лолита Окольнова

Сцепленное наследование

После открытия стали замечать, что не всегда эти законы срабатывают.

Например: скрестили дигетерозиготную самку дрозофилы с серым телом и нормальными крыльями с самцом с черным телом и укороченными крыльями .

Серое тело и нормальные крылья – доминантные признаки.

По законам Менделя схема скрещивания такая:

Но практический результат скрещивания отличается.

Как правило, в потомстве наблюдается расщепление 1:1,

фенотипы потомства: серое тело, нормальные крылья и черное тело, укороченные крылья .

Не срабатывает . Почему же так? Неужели законы Менделя действительно не работают? Конечно же, нет, законы природы, могут быть «нарушены», только если это позволяет другой закон (исключение из правила).

Давайте разберемся…

  • информацию о каждом признаке несет определенный ген;
  • гены находятся в хромосомах.

Естественно, что количество хромосом значительно меньше количества генов, поэтому в одной хромосоме закодировано несколько генов.

Гены, находящиеся в одной хромосоме наследуются вместе, то есть сцеплено .

А гены, находящиеся в разных хромосомах наследуются независимо,

так как при гаметогенезе хромосомы распределяются случайно, следовательно, два несцепленных гена могут попасть вместе в одну гамету гамете, а могут и нет.

Гены, находящиеся в одной хромосоме, обязательно окажутся в одной гамете.

В примере, который мы рассмотрели ранее, мы можем заметить: серое тело наследуется вместе с нормальные крыльями , а черное тело наследуется вместе с укороченными крыльями .

Гены цвета тела и длины крыльев находятся в одной хромосоме.

Самка дигетерозиготна, есть две гомологичные хромосомы:

в одной из гомологичных хромосом закодированы гены серого тела и нормальных крыльев ,

в другой — гены

Но получается всего два вида гамет — признаки цвета тела и размера крыльев «неделимы»

Отцовская особь по этим признакам дигомозиготная:

в одной гомологичной хромосоме гены черного тела и укороченных крыльев ,

и в другой гомологичной хромосоме так же.

Все признаки, закодированные в одной хромосоме, образуют так называемую группу сцепления .

Признаки из одной группы сцепления наследуются вместе.

И как можно догадаться,

количество групп сцепления равно количеству хромосом в гаплоидном наборе.

Примеры задач

Задача 1:

Немного другое оформление: сцепленные признаки записываются на «палочках», например генотип самки из нашей задачи следует записать вот так:

  • палочки означают гомологичные хромосомы, в которых локализованы гены
  • буквы по одну сторону от палочек обозначают сцепленные друг с другом гены.

То есть запись говорит:

признаки АВ сцеплены друг с другом; признаки ab так же сцеплены друг с другом

  • положение генов в генотипе 1) называется цис-положением: AB \\ ab (доминантные признаки на одной хромосоме, рецессивные на другой)
  • положение 2) называется транс-положением: Ab \\ aB.

Разберем на примере:

1) В условии задачи сразу указаны все признаки, заполним таблицу:

2) Первое растение дигетерозиготно, сказано, что доминантные признаки локализованы в одной хромосоме, то есть сцеплены. Причем доминантные признаки находятся на одной гомологичной хромосоме, следовательно на другой гомологичной хромосоме располагаются рецессивные признаки (цис-положение). Генотип первого растения: AB \\ ab.

Получаем всего два вида гамет (так как признаки сцеплены):

AB и ab .

3) Так как у второго растения проявил ись рецессивные признаки, делаем вывод, что оно дигомозиготно. И его генотип: ab\\ab. Образуется только один сорт гамет: ab.

4) Наконец, составим схему скрещивания:

И ответим на последний вопрос задачи — про закон:

проявляется закон сцепленного наследования, он гласит: гены, локализованные в одной хромосоме образуют группу сцепления и наследуются вместе .

Но случается, что даже гены из одной группы сцепления (локализованные в одной хромосоме) наследуются раздельно , то есть «расцепляются».

Для примера, возьмем скрещивание из предыдущей задачи.

При таком же скрещивании может получиться и 4 фенотипические группы (вместо положенных 2) в потомстве, как и при независимом наследовании. Это объясняется возможностью кроссинговера между гомологичными хромосомами (тем, кто не понимает о чем речь, советую прочитать статью кроссинговер ).

Допустим если у особи признаки AB сцеплены, то при образовании гамет, если произойдет кроссинговер, есть вероятность, что участок хромосомы, в котором закодирован один из генов «перескочит» на другую гомологичную хромосому, и сцепление нарушится. На примере нашей задаче, в случае кроссинговера скрещивание будет следующим:


У дигетерозиготного растения образуется еще два сорта гамет, за счет кроссинговера. Гаметы, при образовании которых, произошел кроссинговер (в данной задаче это Ab и aB ) называются кроссоверными . Статистически процент кроссоверных гамет меньше некроссоверных.

И соответственно, чем ближе друг к другу расположены гены в хромосоме, тем вероятность их разъединения.

Эта зависимость вероятности разделения генов кроссинговером и расстояния между генами оказалась настолько «удобной», что расстояние между генами измеряют в процентах вероятности их разъединения при кроссинговере. По формуле:

Где:

  • x – вероятность разъединения генов в процентах,
  • а – количество особей, образовавшихся из кроссоверных гамет, n – количество всех особей.
  • И 1% вероятности разъединения генов приняли за единицу расстояния между этими генами.

Единица эта называется морганида . Назвали единицу в честь известного генетика который изучал это явление

1 морганида = 1% вероятности, что сцепленные гены, в результате кроссинговера, окажутся на разных гомологичных хромосомах

Задача 2:

1) Составим таблицу признаков

2) Раз в условии сказано, что провели анализирующее скрещивание, значит второе растение дигомозиготно по рецессивным признакам, его генотип: ab \\ ab.

3) В потомстве получили 4 фенотипических группы. Так как спризнаки сцеплены, то очевидно имел место кроссинговер. Так же появление четырех фенотипических групп при анализирующем скрещивании указывает на дигетерозиготность первого растения. Значит, его генотип: либо AB \\ ab, либо Ab \\ aB.

Чтобы определить в каком положении гены — цис или транс, надо посмотреть на соотношение в потомстве. П роцент кроссоверных гамет меньше некроссоверных, поэтому особей, получившихся из некроссоверных гамет больше.

Эти особи: 208 высоких растений с гладким эндоспермом, 195 – низких с шероховатым эндоспермом

У них доминантный признак унаследовался с доминантным, а рецессивный с рецессивным. Следовательно гены у родительской дигетерозиготной особи в цис-положении: AB \\ ab.

4) Схема скрещивания:

Красным отмечены кроссоверные гаметы и особи, полученные из них. Этих особей меньше, так как кроссоверных гамет образуется меньше. Если бы у родительской дигетерозиготной особи гены были бы в транс положении, в потомстве наоборот образовалось бы больше особей с признаками: высоких шероховатых, и низких гладких.

5) Определим расстояние между генами.

Для этого вычислим вероятность того, что признаки окажутся разделенными в результате кроссинговера.

По формуле:

x= 9 + 6208+ 195+ 9 + 6 ×100%= 15418 ×100%=3,59%

То есть расстояние между генами = 3,59 морганид.

Такое понятие, как наследование признаков, широко изучается в генетике. Именно им объясняется сходство потомства и родителей. Любопытно, что некоторые проявления признаков наследуются совместно. Это явление, впервые подробно описанное ученым Т. Морганом, стало называться «сцепленное наследование». Поговорим о нем подробнее.

Как известно, каждый организм обладает определенным количеством генов. Хромосом же при этом - также строго ограниченная цифра. Для сравнения: здоровый человеческий организм обладает 46 хромосомами. Генов же в нем в тысячи раз больше. Судите сами: каждый ген отвечает за тот или иной признак, проявляющийся во внешнем облике человека. Естественно, их очень много. Поэтому стали говорить о том, что несколько генов локализуются в одной хромосоме. Называются эти гены группой сцепления и определяют сцепленное наследование. Подобная теория витала в научной среде довольно долгое время, однако лишь Т. Морган дал ей определение.

В отличие от наследования генов, которые локализованы в разных парах одинаковых хромосом, сцепленное наследование обусловливает образование дигетерозиготной особью только двух типов гамет, повторяющих комбинацию родительских генов.

Наряду с этим возникают гаметы, комбинация генов в которых отличается от хромосомного набора родителей. Этот результат является следствием кроссинговера - процесса, важность которого в генетике переоценить сложно, поскольку он позволяет потомству получить различные признаки от обоих родителей.

В природе существуют три типа наследования генов. Для того чтобы определить, какой тип присущ именно данной их паре, применяют В результате обязательно получится один из трех вариантов, приведенных ниже:

1. Независимое наследование. В подобном случае гибриды отличаются друг от друга и от родителей по внешнему виду, иначе говоря, в результате мы имеем 4 варианта фенотипов.

2. Полное сцепление генов. Гибриды первого поколения, получившиеся при скрещивании родительских особей, полностью повторяют фенотип родителей и неотличимы между собой.

3. Неполное сцепление генов. Так же, как и в первом случае, при скрещивании получается 4 класса различных фенотипов. При этом, однако, происходит образование новых генотипов, полностью отличных от родительского фонда. Именно в таком случае в процесс образования гамет вмешивается кроссинговер, упомянутый выше.

Также установлено, что, чем меньше расстояние между наследуемыми генами в родительской хромосоме, тем выше вероятность их полного сцепленного наследования. Соответственно, чем дальше друг от друга они располагаются, тем реже происходит перекрест при мейозе. Расстояние между генами - фактор, в первую очередь определяющий вероятность сцепленного наследования.

Отдельно необходимо рассмотреть сцепленное наследование, связанное с полом. Суть его та же, что и при варианте, рассмотренном выше, однако наследуемые гены в данном случае расположены в половых хромосомах. Поэтому говорить о таком типе наследования можно лишь в случае млекопитающих (человек в их числе), некоторых пресмыкающихся и насекомых.

Принимая во внимание факт того, что XY - это набор хромосом, соответствующий мужскому полу, а XX - женскому, отметим, что все основные признаки, отвечающие за жизнеспособность организма, расположены в хромосоме, присутствующей в генотипе каждого организма. Конечно, речь идет о Х - хромосоме. У женских особей могут наличествовать как рецессивные, так и в хромосомах. Мужские же могут наследовать лишь один из вариантов - то есть либо ген проявляет себя в фенотипе, либо нет.

Сцепленное наследование, обусловленное полом, часто звучит в контексте заболеваний, которые свойственны именно мужчинам, в то время как женщины являются лишь их носителями:

  • гемофилия,
  • дальтонизм;
  • синдром Леша - Найхана.

Биологической основой третьего закона Менделя является независимое расхождение хромосом при мейозе. Поэтому третий закон верен только для генов, находящихся в разных хромосомах.

Если гены находятся в одной хромосоме, то они не могут разойтись независимо друг от друга, поэтому наследуются вместе (сцеплено) - это закон сцепления (закон Моргана).Все гены, находящиеся в одной хромосоме, образуют группу сцепления.

При полном сцеплении (встречается, например, у самцов дрозофил) дигетерозигота образует только два типа гамет.

Гораздо чаще встречается неполное сцепление, когда из-за кроссинговера при мейозе происходит обмен участками хромосом. Тогда дигетерозигота образует 4 типа гамет в неравном соотношении: большую часть составляют гаметы с группой сцепления, меньшую - рекомбинантные гаметы.

Доля рекомбинантных гамет зависит от расстояния между генами в хромосоме, измеряется в условных единицах морганидах. Фраза «расстояние между генами А и В равняется 10 морганид» означает, что рекомбинантных гамет получится в сумме 10% (5%+5%), а нормальных - 90% (45% и 45%).

Тесты

1. При скрещивании мух дрозофил с серым телом и нормальными крыльями и дрозофил с темным телом и зачаточными крыльями проявляется закон сцепленного наследования, следовательно, эти гены расположены в
А) разных хромосомах и сцеплены
Б) одной хромосоме и сцеплены
В) одной хромосоме и не сцеплены
Г) разных хромосомах и не сцеплены

2. Если гены расположены в разных парах негомологичных хромосом, то проявляется закон
А) неполного доминирования
Б) полного доминирования
В) независимого наследования
Г) расщепления признаков

3. Если гены, ответственные за окраску и форму семян гороха, расположены в разных хромосомах, то во втором поколении проявляется закон
А) независимого наследования
Б) сцепленного наследования
В) расщепления признаков
Г) доминирования

4. Количество групп сцепления генов у организмов зависит от числа
А) пар гомологичных хромосом
Б) аллельных генов
В) доминантных генов
Г) молекул ДНК в ядре клетки

5. Если гены, отвечающие за развитие нескольких признаков, расположены в одной хромосоме, то проявляется закон
А) расщепления
Б) сцепленного наследования
В) неполного доминирования
Г) независимого наследования

6. "Гены, расположенные в одной хромосоме, наследуются совместно" - это формулировка закона
А) взаимодействия генов
Б) сцепленного наследования
В) независимого наследования
Г) гомологических рядов изменчивости

7. Какой закон проявляется при скрещивании дигетерозиготных организмов, у которых гены, например А и В, расположены в негомологичных хромосомах?
А) полного доминирования
Б) неполного доминирования
В) независимого наследования
Г) сцепленного наследования

8. Всегда наследуются вместе гены
А) рецессивные
Б) аллельные
В) доминантные
Г) тесно сцепленные

9. При скрещивании дрозофил с серым телом и нормальными крыльями и дрозофил с темным телом и зачаточными крыльями проявляется закон сцепленного наследования, так как отвечающие за эти признаки гены расположены в
А) ДНК митохондрий
Б) разных парах хромосом
В) одной паре хромосом
Г) половых хромосомах

10. Какой закон проявится при скрещивании, если гены расположены в одной хромосоме?
А) расщепления признаков
Б) сцепленного наследования
В) независимого наследования
Г) гомологических рядов

11. Согласно закону Т. Моргана гены наследуются преимущественно вместе, если они расположены в
А) аутосоме
Б) половых хромосомах
В) одной хромосоме
Г) разных гомологичных хромосомах