» » Митохондриальная днк. Митохондриальная генетика человека Гены митохондриальной днк

Митохондриальная днк. Митохондриальная генетика человека Гены митохондриальной днк

Структура и функция митохондрий. Митохондрии - это цитоплазматические органеллы. Их количество и форма варьируют в зависимости от функции клетки. Например, у млекопитающих в клетках печени имеется по 1000-1500 митохондрий. Все они имеют общие структурные особенности: матрикс, внутреннюю и внешнюю мембрану (рис. 2.98). Внутренняя мембрана образует характерные складки: иногда в виде «крист», иногда в виде «трубочек». Митохондрии осуществляют важные биохимические функции, в частности, именно в них происходит аэробное окисление. Вот почему эти органеллы часто называют энергетической фабрикой организма. Энергия хранится в АТР (аденозинтрифосфат). Из трех энергетических источников нашей пищи аминокислоты и жиры подвергаются распаду только в результате аэробного окисления, которое происходит в митохондриях. Кроме того, в них осуществляется цикл лимонной кислоты. Мембрана митохондрий содержит упорядоченную мультиферментную систему, а распределение ферментов в функционально значимом порядке гарантирует упорядоченную последовательность биохимических реакций.

Подобно всему живому митохондрии размножаются путем деления. Их синтез de novo невозможен. Они содержат рибосомы, которые по размеру меньше (70S), чем рибосомы цитоплазмы (80S). Эти и другие факты привели к гипотезе, что митохондрии происходят от микроорганизмов, которые на ранних этапах эволюции вступили в симбиотические взаимоотношения с эукариотической клеткой, а затем были интегрированы, но еще сохраняют свои специфические особенности.

Геном митохондрий. Давно известно, что митохондрии имеют собственную ДНК и собственные гены, например, для транспортной РНК. С другой стороны, многие, но не все митохондриальные ферменты кодируются ядерными генами.

Совсем недавно в лаборатории молекулярной биологии Медицинского исследовательского центра в Кэмбридже была полностью расшифрована последовательность ДНК и выяснена организация генов в митохондриальном геноме человека (, рис. 2.99). Оказалось, что геном митохондрий представлен кольцевой молекулой ДНК, содержащей 16 569 нуклеотидных пар. В состав генома входят гены 12S- и 16S-pPHK, 22 различных тРНК, субъединиц I, II и IIIоксидазы цитохрома с, субъединицы 6 АТРазы, цитохрома b и девяти других пока неизвестных белков. В про-


2. Хромосомы человека 147

тивоположность ядерному геному (разд. 2.3.1.1) нуклеотидная последовательность митохондрий характеризуется весьма экономной организацией: в ней нет или имеется очень мало некодирующих участков. Кроме того, в митохондриальной ДНК транскрибируются и транслируются обе цепи. Во многих случаях триплет, определяющий терминацию транскрипции, не закодирован в ДНК, а создается посттранскрипционно. И наконец, по ряду характеристик генетический код митохондриальной ДНК человека отличается от универсального: UGA кодирует триптофан, а не терминацию транскрипции, AUA кодирует метионин, а не изолейцин, AGA и AGG являются стоп-кодонами, а аргинин не кодируют. Существенно также, что в третьей позиции кодонов, которая является основным источником вырожденности кода, А или С (по сравнению с G или Т) встречаются чаще, чем в ядерном геноме.

Полиморфизм ДНК и наследственные болезни, связанные с митохондриальными мутациями. Расшифровка нуклеотидной последовательности митохондриального генома человека ускорила выявление в нем полиморфных сайтов рестрикции (разд. 2.3.2.7, см. разд. 6.1). Бланк и соавт. для анализа ДНК использовали 12 рестриктаз. В группу испытуемых входило 112 человек, принадлежащих разным расовым группам. Скринировали суммарно 441 сайт рестрикции. Из всех исследованных сайтов 163 оказались полиморфными, т.е. присутствовали у одних и отсутствовали у других индивидов. Остальные 278 сайтов оказались константными. Полиморфизм наблюдали во всех частях генома. Кроме того, обнаружены расовые различия в отношении частоты ряда полиморфных вариантов .

До настоящего времени генетическая рекомбинация митохондриальной ДНК человека не обнаружена; если она и происходит, то, вероятно, очень редко. Следовательно, рестрикционный полиморфизм митохондриальной ДНК в популяции отражает картину ее мутационной истории. Это означает, что, сравнивая популяции по полиморфизму этого типа, можно определить их происхождение и историю много точнее, чем на основе анализа полиморфизма классического типа (разд. 6.2.3).

Рис. 2.99.Митохондриальный геном человека представляет собой двухцепочечное кольцо. Цепи отличаются по их плотности в градиенте CsCl: тяжелая (Н) и легкая (L). Стрелки показывают направление транскрипции. Начало стрелок совпадает с сайтом промотора. Участки, обозначенные жирной линией, содержат идентифицированные гены двух молекул рРНК; гены CoI, CoII и СоIII для субъединиц оксидазы цитохрома с; для субъединицы 6 АТР-синтазы и для цитохрома b, Гены тРНК для различных аминокислот обозначены точками. L-цепь содержит 8 генов тРНК. Пустые участки, вероятно, кодируют еще неидентифицированные гены. (По Kuppers, Molekulare Genetik, 4th ed., 1985.)

Большое количество митохондрий содержится в ооцитах, тогда как в спермин их только четыре. При оплодотворении эти митохондрии не попадают в ооцит. Следовательно, все митохондрии во всех клетках любого индивида имеют материнское происхождение . В связи с этим возникает вопрос, может ли мутация в митохондриальной ДНК быть причиной наследственного заболевания. Такая патология должна передаваться только от матери всем ее детям (разд. 3.15).

Представляется, что такой тип наследо-


148 2. Хромосомы человека

вания маловероятен, ведь каждый ооцит содержит множество митохондрий, и если в одной из них произошла мутация, все остальные остаются немутантными и, следовательно, не должно быть никакого фенотипического эффекта. С другой стороны, такой же аргумент справедлив и в отношении рестрикционного полиморфизма митохондриальной ДНК. Однако полиморфизм этого типа наследуется всеми детьми от матери, причем все митохондрии одного индивида генетически однородны. Какова причина этого пока непонятного явления? Может быть, все митохондрии ооцита являются потомками одной стволовой митохондрии?

Presentation Transcript

    Синдром Лебера: LHON (1871 г.) наследуемая по материнской линии потеря зрения происходит у людей 20-30 лет вследствие атрофии зрительного нерва и дегенерации ганглиозного слоя клеток ретины Заболевание связано с передаваемой от матери мутацией митохондриальной ДНК в одном из ND генов (комплекс I). В 70% случаев это G11778A(ND4), а в Японии в 90% в 13% случаев G3460A (ND1); в 14% случаевT14484C (ND6) Мутация находится в гомоплазматическом состоянии

    634 п.н. ДНК-диагностика синдрома Лебера в семье Nпроведена нами впервые в 2006 году G11778 G11778A замена пробанд с синдромом Лебера здоровый сестра мать человек пробанда

    В 80-85% случаев поражаются мужчины (Х хромосома несет какой-то локус чувствительности?) Лишь у 50% мужчин и 10% женщин носителей патогенных мутаций комплекса I в действительности происходит потеря зрения?? Чаще всего мутации, ведущие к синдрому Лебера, встречаются в мтДНК гаплогруппы J; эту группу несут около 15% европейцев?? В формировании заболевания участвуют какие-то дополнительные факторы (???)

    Самая часто встречающаяся точечная мутация: А3243Gв лейциновой тРНК Обнаружена у большинства больных с синдромом MELAS инсультоподобные(stroke-like) эпизоды Миопатия лактат-ацидоз энцефалопатия Мутация встречается исключительно в гетероплазматическом состоянии В одних семьях А3243Gвызывает преимущественно кардиомиопатию, в других – диабет и глухоту, в третьих PEO, в четвертых - энцефалопатию???

    Синдрома MELAS была проведена нами в 2007 году Мама: фенотипически здоровая женщина очень маленького роста I брак II брак 2ой ребенок 1991-2007 Менингоэнцефалит Умерот ишемического инфаркта обоих полушарий мозжечка 3ий ребенок родился в 1998 Прогрессирующая миопатия, миокардио-дистрофия 1ый ребенок 1988-2000 Кардиопатия, ЗПР, ЗФР. Умерла скоропостижно после травмы Митохондриопатия?? Обнаружена мутация MELAS у сына (80% мутантных молекул в крови) у мамы(40%)

    РНК(продолжение) Мутация А8344Gв гене лизиновой тРНК при уровне мутантных молекул > 85% приводит к синдрому MERRF: Миоклонус-эпилепсия; «рваные» красные мышечные волокна; задержка умственного развития; атаксия; атрофия мышц и др. Матери больных обычно фенотипически здоровы или несут слабо выраженные симптомы Мутация резко снижает эффективность трансляции в мт и тем самым провоцирует дефицит дыхательной цепи

    Чаще всего встречается мутация гена 12S рРНК A1555G Вызывает несиндромную потерю слуха из-за чувствительности носителей мутации к ототоксическим аминогликозидам Другие мутации генов 12S и 16S вызывают кардиомиопатию, атаксию, MELAS, диабет mellitus, сенсорно-невральная потерю слуха

    NARP (neuropathy ataxia and retinitis pigmentosa) Мутация в генеATPase6– трансверсияТ – G в нуклеотиде 8993 (70-90% мутантной ДНК) T8993G:лейцин замещаетсянааргинин вATPase6, чтоприводит к нарушению синтеза АТФ Если доля мтДНК больше 90%, клиническое проявление наблюдается раньшеи симптомы более тяжелые:подострая некротизирующая энцефалопатия с чертами синдрома Лея (LS)

    Нейродегенеративное заболевание: - симметричные некротические повреждения в субкортикальных областях ЦНС – базальных ганглиях, таламусе, стволе мозга, спинном мозге; - демиелинизация, сосудистая пролиферация и «глиозис»; - моторная и умственная регрессия, атаксия, дистония, аномальное дыхание Заболевание начинается в раннем детстве, редко во взрослом состоянии; Смерть наступает обычно через два года после начала заболевания

    ДНК (MILS) 7/10 cлучаев – рецессивные мутации ядерных аутосомных генов, кодирующих субъединицы дыхательной цепи или белки, участвующие в ее сборке ATPase 6 LS 1/10 cлучаев – мутации Х-хромосомы PDHC

    Причина – крупная делеция 5 т.п.н. Утрачиваются 5 генов тРНК и 5 белковых генов KSS –фатальная мультисистемная патология, проявляется в возрасте 4-18 лет:CPEO, пигментный ретинит, атаксия,глухота, эндокринная дисфункция, атриовентрикулярная блокада сердца, повышение уровня белка в цереброспинальной жидкости выше 100 мг/дл, «рваные» волокна в скелетных мышцах Делеция не наследуется

    2 синдрома: Синдром Пирсона –PS Гипопластическая анемия, нарушение экзокринной функции поджелудочной железы Синдром PEO– Прогрессирующая наружная офтальмоплегия Все три синдрома являются спорадическими, формиуются в зависимости от сегрегации мутантных мтДНК с накоплением в разных тканях

    П.н. вместо фатального KSS может наблюдаться PEO Прогрессирующая наружная офтальмоплегия, птоз Патология связана с параличом наружных глазодвигательных мышц Процент мутантных молекул в этом случае меньше, чем при KSS синдроме, синдром не связан с угрозой для жизни больного Биохимически в мышцах обнаруживаются дефекты ферментов дыхательной цепи, особенно цитохромоксидазы

    Деплеции -МDS В клетках остается 1 - 30% от нормального количества мтДНК Синдром проявляется в первые недели после рождения: фатальная гепатопатия; миопатия с генерализованной гипотонией; кардиомиопатия с судорогами (синдр. де-Тони-Дебре-Фанкони); атрофия проксимальных групп мышц; утрата сухожильных рефлексов. Смерть наступает в тяжелых случаях в первый год жизни

    Генов дыхательной цепи LHON LHON+дистония Спорадическая миопатия Спорадическая миопатия Энцефаломиопатия Спорадическаямиопатия NARP MILS FBSN М Я Синдром Лея Лейкодистрофия Синдром Лея Кардиоэнцефалопатия Лейкодистрофия/тубулопатия Синдром Лея Параганглиома

    Митохондриальную аномалию? При ясных симптомах – выделить кровь из вены и сделать ПЦР-анализ на точечные мутации или делеции Если результат анализа крови отрицательный, это еще не значит отсутствия заболевания (гетероплазмия!) Нужно взять биопсию: мышечную или кожную пробу у взрослых у детей Для неинвазивного тестирования используют седимент мочи, соскоб внутренней поверхности щеки, реже волосяные фолликулы

    Митохондриальную аномалию? (2) Свежую мышцу анализируют гистологически и гистохимически Проводятся измерения активности отдельных звеньев комплексов дыхательной цепи «Рваные» мышечные волокна выявляются при окраске на сукцинатдегидрогеназную активность или с помощью Гомори “trichrome stain” культура фибробластов свежая мышца Если обнаруживается дефект в одном звене, это указывает на мутацию соответствующей субъединицы (я или м), если дефекты множественные – возможен дефект мт тРНК либо ядерных генов, участвующих в работе митохондрий

    Митохондриальную аномалию? (3) Иногда дефект проявляется при нагрузке (NARP синдром при мутации гена ATPase6) –нужно клиническое тестирование: физические нагрузки с замерами лактата, магнитно-резонансной или инфракрасной спектроскопией Наконец, в случае еще не описанных, редких «private» мутаций проводят прямое секвенирование мтДНК

    Заболеваний вовлеченность разных органов и одновременное проявление внешне не связанных между собой аномалий Наружная офтальмоплегия с нарушением проводимости сердечной мышцы и мозжечковой атаксией Мигрени с мышечной слабостью Энцефало- миопатия с диабетом Тошнота, рвота с оптической атрофией и кардиомиопатией Диабет с глухотой Глухота с наружной офтальмоплегией, птозом и ретинопатией Низкорослость с миопатией и инсультоподобными эпизодами Экзокринная дисфункция поджелудочной железы с сидеробластной анемией Задержка развития или потеря навыков и офтальмоплегия, офтальмопарез

    Митохондриальные болезни? Частота митохондриальных энцефалопатий определяется примерно как 1: 11.000 Общая частота митохондриальных заболеваний – как 1: 8.000 Возраст манифестациимитохондриальных заболеваний сильно варьирует ~ 50 % после 5 лет ~ 50% - до 5 лет Смертность от митохондриальных заболеваний составляет 5-20% в год от даты манифестации

    Митохондриопатия, то после перенесенных инфекционных заболеваний его состояние может резко ухудшиться также отягощают состояние стресс, голодание, переохлаждение, продолжительная обездвиженность, прием седативных средств Осторожно применять местную и общую анестезию!

    Болезней –насколько это реально? Фармакологический подход Витамины, кофакторы, «ловцы» свободных радикалов – для предотвращения повреждения дыхательной цепи Наиболее успешный пример – дихлорацетат, применяемый для уменьшения лактоацидоза у пациентов с МELAS Успех частичный и временный, чаще терапия неэффективна

    Болезней (2) Другой подход - уменьшить соотношение мутантная:нормальная мтДНК I. Увеличить количество немутантных молекулпутем «сдвига генов» Обычно сателлитные клетки пролиферируют и сливаются со скелетными миофибриллами в ответ на стресс или упражнение У некоторых больных с миопатией % мутантной мтДНК в сателлитных клетках ниже, чем в в скелетной мышце Пропорция нормальных мтДНК молекул в мышце увеличивалась, дефект корректировался Индуцируется пролиферация сателлитных клеток в скелетных мышцах

    Болезней (3) II.Уменьшить количество мутантных молекул мтДНК Разработка синтетических молекул, избирательно связывающихся с мутаными ДНК и блокирующих их репликацию Введение в митохондрии фермента рестриктазы, избирательно разрушающего мутантную ДНК Успех достигнут пока только in vitro

    Болезней (4) «Молекулярно-внутриклеточная реконструкция» Импорт из цитоплазмы нормальных тРНК вместо дефектных митохондриальных Замена дефектного комплекса дых. цепи на нормальный, полученный из другого организма (дрожжей) Пересадка ядра яйцеклетки из мутантной цитоплазмы в нормальную Все эти подходы - в стадии экпериментальной разработки

    Болезней –насколько это реально? Вылечить от митохондриального заболевания сегодня невозможно Применяется симптоматическое лечение: Физическое Физиотерапия, аэробная гимнастика, умеренные и легкие нагрузки Анти-эпилептические препараты, гормоны, витамины, метаболиты, кофакторы Фармакологическое Блефаропластика, имплантация cohlear, трансплантация сердца, почек, печени, подкожная эндоскопическая гастротомия, cricopharyngeal миотомия Хирургическое

    Митохондриальные заболевания или отягощает их течение Вальпроат: увеличивает частоту судорог при MELAS, гепатотоксичен Аспирин, фенобарбитал Кортикостероиды Тетрациклин, хлорамфеникол Аминогликозидыстрептомицин, гентамицин, амикацин, неомицин, канамицин - ототоксичны Этамбутол (провоцирует проявление LHON) Статин (провоцирует проявление MELAS) Антиретровирусные препараты: AZT – zidovudine, doxorubicin вызывают деплецию мтДНК Список далеко не полный!

    Load More ...

© Г.М.Дымшиц

Сюрпризы митохондриального генома

Г.М. Дымшиц

Григорий Моисеевич Дымшиц, доктор биологических наук, профессор кафедры молекулярной биологии Новосибирского государственного университета, заведующий лабораторией структуры генома Института цитологии и генетики Сибирского отделения РАН. Соавтор и редактор четырех школьных учебников по общей биологии.
Со времени обнаружения в митохондриях молекул ДНК прошло четверть века, прежде чем ими заинтересовались не только молекулярные биологи и цитологи, но и генетики, эволюционисты, а также палеонтологи и криминалисты, историки и лингвисты. Такой широкий интерес спровоцировала работа А.Уилсона из Калифорнийского университета. В 1987 г. он опубликовал результаты сравнительного анализа ДНК митохондрий, взятых у 147 представителей разных этносов всех человеческих рас, заселяющих пять континентов. По типу, местоположению и количеству индивидуальных мутаций установили, что все митохондриальные ДНК возникли из одной предковой последовательности нуклеотидов путем дивергенции. В околонаучной прессе вывод этот интерпретировали крайне упрощенно - все человечество произошло от одной женщины, названной митохондриальной Евой (и дочери и сыновья получают митохондрии только от матери), которая жила в Северо-Восточной Африке около 200 тыс. лет назад. Еще через 10 лет удалось расшифровать фрагмент ДНК митохондрий, выделенный из останков неандертальца, и оценить время существования последнего общего предка человека и неандертальца в 500 тыс. лет назад .

Сегодня митохондриальная генетика человека интенсивно развивается как в популяционном, так и в медицинском аспекте. Установлена связь между рядом тяжелых наследственных заболеваний и дефектами в митохондриальных ДНК. Генетические изменения, ассоциированные со старением организма, наиболее выражены в митохондриях. Что же представляет из себя геном митохондрий, отличающийся у человека и других животных от такового у растений, грибов и простейших и по размеру, и по форме, и по генетической емкости? Как работает и как возник митохондриальный геном у разных таксонов? Об этом и пойдет речь в нашей статье.

Митохондрии называют энергетическими станциями клетки. Помимо наружной гладкой мембраны они имеют внутреннюю мембрану, образующую многочисленные складки - кристы. В них встроены белковые компоненты дыхательной цепи - ферменты, участвующие в преобразовании энергии химических связей окисляемых питательных веществ в энергию молекул аденозинтрифосфорной кислоты (АТФ). Такой “конвертируемой валютой” клетка оплачивает все свои энергетические потребности. В клетках зеленых растений помимо митохондрий есть еще и другие энергетические станции - хлоропласты. Они работают на “солнечных батареях”, но тоже образуют АТФ из АДФ и фосфата. Как и митохондрии, хлоропласты - автономно размножающиеся органеллы - также имеют две мембраны и содержат ДНК.

В матриксе митохондрий, кроме ДНК, находятся и собственные рибосомы, по многим характеристикам отличающиеся от эвкариотических рибосом, расположенных на мембранах эндоплазматической сети. Однако на рибосомах митохондрий образуется не более 5% от всех белков, входящих в их состав. БOльшая часть белков, составляющих структурные и функциональные компоненты митохондрий, кодируется ядерным геномом, синтезируется на рибосомах эндоплазматической сети и транспортируется по ее каналам к месту сборки. Таким образом, митохондрии - это результат объединенных усилий двух геномов и двух аппаратов транскрипции и трансляции. Некоторые субъединичные ферменты дыхательной цепи митохондрий состоят из разных полипептидов, часть которых кодируется ядерным, а часть - митохондриальным геномом. Например, ключевой фермент окислительного фосфорилирования - цитохром-с-оксидаза у дрожжей состоит из трех субъединиц, кодируемых и синтезируемых в митохондриях, и четырех, кодируемых в ядре клетки и синтезируемых в цитоплазме. Экспрессией большинства генов митохондрий управляют определенные гены ядер.

Размеры и формы митохондриальных геномов

К настоящему времени прочитано более 100 разных геномов митохондрий. Набор и количество их генов в митохондриальных ДНК, для которых полностью определена последовательность нуклеотидов, сильно различаются у разных видов животных, растений, грибов и простейших. Наибольшее количество генов обнаружено в митохондриальном геноме жгутикового простейшего Rectinomonas americana - 97 генов, включая все кодирующие белок гены, найденные в мтДНК других организмов. У большинства высших животных геном митохондрий содержит 37 генов: 13 для белков дыхательной цепи, 22 для тРНК и два для рРНК (для большой субъединицы рибосом 16S рРНК и для малой 12S рРНК). У растений и простейших, в отличие от животных и большинства грибов, в митохондриальном геноме закодированы и некоторые белки, входящие в состав рибосом этих органелл. Ключевые ферменты матричного полинуклеотидного синтеза, такие как ДНК-полимераза (осуществляющая репликацию митохондриальной ДНК) и РНК-полимераза (транскрибирующая геном митохондрий), зашифрованы в ядре и синтезируются на рибосомах цитоплазмы. Этот факт указывает на относительность автономии митохондрий в сложной иерархии эвкариотической клетки.

Геномы митохондрий разных видов отличаются не только по набору генов, порядку их расположения и экспрессии, но по размеру и форме ДНК. Подавляющее большинство описанных сегодня митохондриальных геномов представляет собой кольцевые суперспирализованные двуцепочечные молекулы ДНК. У некоторых растений наряду с кольцевыми формами имеются и линейные, а у некоторых простейших, например инфузорий, в митохондриях обнаружены только линейные ДНК .

Как правило, в каждой митохондрии содержится несколько копий ее генома. Так, в клетках печени человека около 2 тыс. митохондрий, и в каждой из них - по 10 одинаковых геномов. В фибробластах мыши 500 митохондрий, содержащих по два генома, а в клетках дрожжей S.cerevisiae - до 22 митохондрий, имеющих по четыре генома.

Митохондриальный геном растений, как правило, состоит из нескольких молекул разного размера. Одна из них, “основная хромосома”, содержит большую часть генов, а кольцевые формы меньшей длины, находящиеся в динамическом равновесии как между собой, так и с основной хромосомой, образуются в результате внутри- и межмолекулярной рекомбинации благодаря наличию повторенных последовательностей (рис.1).

Рис 1. Схема образования кольцевых молекул ДНК разного размера в митохондриях растений.
Рекомбинация происходит по повторенным участкам (обозначены синим цветом).


Рис 2. Схема образования линейных (А), кольцевых (Б), цепных (В) олигомеров мтДНК.
ori - район начала репликации ДНК.

Размер генома митохондрий разных организмов колеблется от менее 6 тыс. пар нуклеотидов у малярийного плазмодия (в нем, помимо двух генов рРНК, содержится только три гена, кодирующих белки) до сотен тысяч пар нуклеотидов у наземных растений (например, у Arabidopsis thaliana из семейства крестоцветных 366924 пар нуклеотидов). При этом 7-8-кратные различия в размерах мтДНК высших растений обнаруживаются даже в пределах одного семейства. Длина мтДНК позвоночных животных отличается незначительно: у человека - 16569 пар нуклеотидов, у свиньи - 16350, у дельфина - 16330, у шпорцевой лягушки Xenopus laevis - 17533, у карпа - 16400. Эти геномы сходны также и по локализации генов, большинство которых располагаются встык; в ряде случаев они даже перекрываются, обычно на один нуклеотид, так что последний нуклеотид одного гена оказывается первым в следующем. В отличие от позвоночных, у растений, грибов и простейших мтДНК содержат до 80% некодирующих последовательностей. У разных видов порядок генов в геномах митохондрий отличается.

Высокая концентрация активных форм кислорода в митохондриях и слабая система репарации увеличивают частоту мутаций мтДНК по сравнению с ядерной на порядок. Радикалы кислорода служат причиной специфических замен Ц® Т (дезаминирование цитозина) и Г® Т (окислительное повреждение гуанина), вследствие чего, возможно, мтДНК богаты АТ-парами. Кроме того, все мтДНК обладают интересным свойством - они не метилируются, в отличие от ядерных и прокариотических ДНК. Известно, что метилирование (временная химическая модификация нуклеотидной последовательности без нарушения кодирующей функции ДНК) - один из механизмов программируемой инактивации генов .

Репликация и транскрипция ДНК митохондрий млекопитающих

У большинства животных комплементарные цепи в мтДНК значительно различаются по удельной плотности, поскольку содержат неодинаковое количество “тяжелых” пуриновых и “легких” пиримидиновых нуклеотидов. Так они и называются - H (heavy - тяжелая) и L (light - легкая) цепь. В начале репликации молекулы мтДНК образуется так называемая D-петля (от англ. displacement loop - петля смещения). Эта структура, видимая в электронный микроскоп, состоит из двуцепочечного и одноцепочечного (отодвинутой части Н-цепи) участков. Двуцепочечный участок формируется частью L-цепи и комплементарным ей вновь синтезированным фрагментом ДНК длиной 450-650 (в зависимости от вида организма) нуклеотидов, имеющим на 5"-конце рибонуклеотидную затравку, которая соответствует точке начала синтеза Н-цепи (ori H). Синтез L-цепи начинается лишь тогда, когда дочерняя Н-цепь доходит до точки ori L. Это обусловлено тем, что область инициации репликации L-цепи доступна для ферментов синтеза ДНК лишь в одноцепочечном состоянии, а следовательно, только в расплетенной двойной спирали при синтезе Н-цепи. Таким образом, дочерние цепи мтДНК синтезируются непрерывно и асинхронно (рис.3).

Рис 3. Схема репликации мтДНК млекопитающих.
Сначала формируется D-петля, затем синтезируется дочерняя Н-цепь,
потом начинается синтез дочерней L-цепи.

В митохондриях общее число молекул с D-петлей значительно превышает число полностью реплицирующихся молекул. Обусловлено это тем, что у D-петли есть дополнительные функции - прикрепление мтДНК к внутренней мембране и инициация транскрипции, поскольку в этом районе локализованы промоторы транскрипции обеих цепей ДНК.

В отличие от большинства эвкариотических генов, которые транскрибируются независимо друг от друга, каждая из цепей мтДНК млекопитающих переписывается с образованием одной молекулы РНК, начинающейся в районе ori H. Помимо этих двух длинных молекул РНК, комплементарных Н- и L-цепям, формируются и более короткие участки Н-цепи, которые начинаются в той же точке и заканчиваются на 3"-конце гена 16S рРНК (рис.4). Таких коротких транскриптов в 10 раз больше, чем длинных. В результате созревания (процессинга) из них образуются 12S рРНК и 16S рРНК, участвующие в формировании митохондриальных рибосом, а также фенилаланиновая и валиновая тРНК. Из длинных транскриптов вырезаются остальные тРНК и образуются транслируемые мРНК, к 3"-концам которых присоединяются полиадениловые последовательности. 5"-концы этих мРНК не кэпируются, что необычно для эвкариот. Сплайсинга (сращивания) не происходит, поскольку ни один из митохондриальных генов млекопитающих не содержит интронов.

Рис 4. Транскрипция мтДНК человека, содержащей 37 генов. Все транскрипты начинают синтезироваться в районе ori H. Рибосомные РНК вырезаются из длинного и короткого транскриптов Н-цепи. тРНК и мРНК образуются в результате процессинга из транскриптов обеих цепей ДНК. Гены тРНК обозначены светло-зеленым цветом.
Сюрпризы митохондриального генома

Несмотря на то, что в геномах митохондрий млекопитающих и дрожжей содержится приблизительно одинаковое количество генов, размеры дрожжевого генома в 4-5 раз больше - около 80 тыс. пар нуклеотидов. Хотя кодирующие последовательности мтДНК дрожжей высоко гомологичны соответствующим последовательностям у человека, дрожжевые мРНК дополнительно имеют 5"-лидерную и 3"-некодирующую области, как и большинство ядерных мРНК. Ряд генов содержит еще и интроны. Так, в гене box, кодирующем цитохромоксидазу b, имеется два интрона. Из первичного РНК-транскрипта автокаталитически (без участия каких-либо белков) вырезается копия большей части первого интрона. Оставшаяся РНК служит матрицей для образования фермента матуразы, участвующей в сплайсинге. Часть ее аминокислотной последовательности закодирована в оставшихся копиях интронов. Матураза вырезает их, разрушая свою собственную мРНК, копии экзонов сшиваются, и образуется мРНК для цитохромоксидазы b (рис.5). Открытие такого феномена заставило пересмотреть представление об интронах, как о “ничего не кодирующих последовательностях”.

Рис 5. Процессинг (созревание) мРНК цитохромоксидазы b в митохондриях дрожжей.
На первом этапе сплайсинга образуется мРНК, по которой синтезируется матураза,
необходимая для второго этапа сплайсинга.

При изучении экспрессии митохондриальных генов Trypanosoma brucei обнаружилось удивительное отклонение от одной из основных аксиом молекулярной биологии, гласящей, что последовательность нуклеотидов в мРНК в точности соответствует таковой в кодирующих участках ДНК. Оказалось, мРНК одной из субъединиц цитохром-с-оксидазы редактируется, т.е. после транскрипции изменяется ее первичная структура - вставляется четыре урацила. В результате образуется новая мРНК, служащая матрицей для синтеза дополнительной субъединицы фермента, последовательность аминокислот в которой не имеет ничего общего с последовательностью, кодируемой нередактированной мРНК (см. таблицу).

Впервые обнаруженное в митохондриях трипаносомы редактирование РНК широко распространено в хлоропластах и митохондриях высших растений. Найдено оно и в соматических клетках млекопитающих, например, в кишечном эпителии человека редактируется мРНК гена аполипопротеина.

Наибольший сюрприз ученым митохондрии преподнесли в 1979 г. До того времени считалось, что генетический код универсален и одни и те же триплеты кодируют одинаковые аминокислоты у бактерий, вирусов, грибов, растений и животных. Английский исследователь Беррел сопоставил структуру одного из митохондриальных генов теленка с последовательностью аминокислот в кодируемой этим геном субъединице цитохромоксидазы. Оказалось, что генетический код митохондрий крупного рогатого скота (как и человека) не просто отличается от универсального, он “идеален”, т.е. подчиняется следующему правилу: “если два кодона имеют два одинаковых нуклеотида, а третьи нуклеотиды принадлежат к одному классу (пуриновых - А, Г, или пиримидиновых - У, Ц), то они кодируют одну и ту же аминокислоту”. В универсальном коде есть два исключения из этого правила: триплет АУА кодирует изолейцин, а кодон АУГ - метионин, в то время как в идеальном коде митохондрий оба эти триплета кодируют метионин; триплет УГГ кодирует лишь триптофан, а триплет УГА - стоп-кодон. В универсальном коде оба отклонения касаются принципиальных моментов синтеза белка: кодон АУГ - инициирующий, а стоп-кодон УГА останавливает синтез полипептида. Идеальный код присущ не всем описанным митохондриям, но ни у одной из них нет универсального кода. Можно сказать, что митохондрии говорят на разных языках, но никогда - на языке ядра.

Как уже говорилось, в митохондриальном геноме позвоночных есть 22 гена тРНК. Каким же образом такой неполный набор обслуживает все 60 кодонов для аминокислот (в идеальном коде из 64 триплетов четыре стоп-кодона, в универсальном - три)? Дело в том, что при синтезе белка в митохондриях упрощены кодон-антикодонные взаимодействия - для узнавания используется два из трех нуклеотидов антикодона. Таким образом, одна тРНК узнает все четыре представителя кодонового семейства, отличающиеся только третьим нуклеотидом. Например, лейциновая тРНК с антикодоном ГАУ встает на рибосоме напротив кодонов ЦУУ, ЦУЦ, ЦУА и ЦУГ, обеспечивая безошибочное включение лейцина в полипептидную цепь. Два других лейциновых кодона УУА и УУГ узнаются тРНК с антикодоном ААУ. В целом, восемь разных молекул тРНК узнают восемь семейств по четыре кодона в каждом, и 14 тРНК узнают разные пары кодонов, каждая из которых шифрует одну аминокислоту.

Важно, что ферменты аминоацил-тРНК-синтетазы, ответственные за присоединение аминокислот к соответствующим тРНК митохондрий, кодируются в ядре клетки и синтезируются на рибосомах эндоплазматической сети. Таким образом, у позвоночных животных все белковые компоненты митохондриального синтеза полипептидов зашифрованы в ядре. При этом синтез белков в митохондриях не подавляется циклогексимидом, блокирующим работу эвкариотических рибосом, но чувствителен к антибиотикам эритромицину и хлорамфениколу, ингибирующим белковый синтез в бактериях. Этот факт служит одним из аргументов в пользу происхождения митохондрий из аэробных бактерий при симбиотическом образовании эвкариотических клеток .

Симбиотическая теория происхождения митохондрий

Гипотезу о происхождении митохондрий и растительных пластид из внутриклеточных бактерий-эндосимбионтов высказал Р.Альтман еще в 1890 г. За век бурного развития биохимии, цитологии, генетики и появившейся полвека назад молекулярной биологии гипотеза переросла в теорию, основанную на большом фактическом материале. Суть ее такова: с появлением фотосинтезирующих бактерий в атмосфере Земли накапливался кислород - побочный продукт их метаболизма. С ростом его концентрации усложнялась жизнь анаэробных гетеротрофов, и часть из них для получения энергии перешла от бескислородного брожения к окислительному фосфорилированию. Такие аэробные гетеротрофы могли с бOльшим КПД, чем анаэробные бактерии, расщеплять органические вещества, образующиеся в результате фотосинтеза. Часть свободно живущих аэробов была захвачена анаэробами, но не “переварена”, а сохранена в качестве энергетических станций, митохондрий. Не стоит рассматривать митохондрии как рабов, взятых в плен, чтобы снабжать молекулами АТФ не способные к дыханию клетки. Они скорее “существа”, еще в протерозое нашедшие для себя и своего потомства лучшее из убежищ, где можно затрачивать наименьшие усилия, не подвергаясь риску быть съеденными.

В пользу симбиотической теории говорят многочисленные факты:

- совпадают размеры и формы митохондрий и свободно живущих аэробных бактерий; те и другие содержат кольцевые молекулы ДНК, не связанные с гистонами (в отличие от линейных ядерных ДНК);

По нуклеотидным последовательностям рибосомные и транспортные РНК митохондрий отличаются от ядерных, демонстрируя при этом удивительное сходство с аналогичными молекулами некоторых аэробных грамотрицательных эубактерий;

Митохондриальные РНК-полимеразы, хотя и кодируются в ядре клетки, ингибируются рифампицином, как и бактериальные, а эвкариотические РНК-полимеразы нечувствительны к этому антибиотику;

Белковый синтез в митохондриях и бактериях подавляется одними и теми же антибиотиками, не влияющими на рибосомы эвкариот;

Липидный состав внутренней мембраны митохондрий и бактериальной плазмалеммы сходен, но сильно отличается от такового наружной мембраны митохондрий, гомологичной другим мембранам эвкариотических клеток;

Кристы, образуемые внутренней митохондриальной мембраной, являются эволюционными аналогами мезосомных мембран многих прокариот;

До сих пор сохранились организмы, имитирующие промежуточные формы на пути к образованию митохондрий из бактерий (примитивная амеба Pelomyxa не имеет митохондрий, но всегда содержит эндосимбиотические бактерии).

Существует представление, что разные царства эвкариот имели разных предков и эндосимбиоз бактерий возникал на разных этапах эволюции живых организмов. Об этом же говорят отличия в строении митохондриальных геномов простейших, грибов, растений и высших животных. Но во всех случаях основная часть генов из промитохондрий попала в ядро, возможно, с помощью мобильных генетических элементов. При включении части генома одного из симбионтов в геном другого интеграция симбионтов становится необратимой.

Новый геном может создавать метаболические пути, приводящие к образованию полезных продуктов, которые не могут быть синтезированы ни одним из партнеров по отдельности. Так, синтез стероидных гормонов клетками коры надпочечников представляет собой сложную цепь реакций, часть которых происходит в митохондриях, а часть - в эндоплазматической сети . Захватив гены промитохондрий, ядро получило возможность надежно контролировать функции симбионта. В ядре кодируются все белки и синтез липидов наружной мембраны митохондрий, большинство белков матрикса и внутренней мембраны органелл. Самое главное, что ядро кодирует ферменты репликации, транскрипции и трансляции мтДНК, контролируя тем самым рост и размножение митохондрий. Скорость роста партнеров по симбиозу должна быть приблизительно одинаковой. Если хозяин будет расти быстрее, то с каждым его поколением число симбионтов, приходящихся на одну особь, будет уменьшаться, и, в конце концов, появятся потомки, не имеющие митохондрий. Мы знаем, что в каждой клетке организма, размножающегося половым путем, содержится много митохондрий, реплицирующих свои ДНК в промежутке между делениями хозяина. Это служит гарантией того, что каждая из дочерних клеток получит по крайней мере одну копию генома митохондрии.

Цитоплазматическая наследственность

Помимо кодирования ключевых компонентов дыхательной цепи и собственного белоксинтезирующего аппарата, митохондриальный геном в отдельных случаях участвует в формировании некоторых морфологических и физиологических признаков. К таким признакам относятся характерные для ряда видов высших растений синдром NCS (non-chromosomal stripe, нехромосомно кодируемая пятнистость листьев) и цитоплазматическая мужская стерильность (ЦМС), приводящая к нарушению нормального развития пыльцы. Проявление обоих признаков обусловлено изменениями в структуре мтДНК. При ЦМС наблюдаются перестройки геномов митохондрий в результате рекомбинационных событий, ведущих к делециям, дупликациям, инверсиям или инсерциям определенных нуклеотидных последовательностей или целых генов. Такие изменения могут вызывать не только повреждения имеющихся генов, но и появление новых работающих генов.

Цитоплазматическая наследственность, в отличие от ядерной, не подчиняется законам Менделя. Это связано с тем, что у высших животных и растений гаметы от разных полов содержат несопоставимые количества митохондрий. Так, в яйцеклетке мыши имеется 90 тыс. митохондрий, а в сперматозоиде - лишь четыре. Очевидно, что в оплодотворенной яйцеклетке митохондрии преимущественно или только от женской особи, т.е. наследование всех митохондриальных генов материнское. Генетический анализ цитоплазматической наследственности затруднен из-за ядерно-цитоплазматических взаимодействий. В случае цитоплазматической мужской стерильности мутантный митохондриальный геном взаимодействует с определенными генами ядра, рецессивные аллели которых необходимы для развития признака. Доминантные аллели этих генов как в гомо-, так и в гетерозиготном состоянии восстанавливают фертильность растений вне зависимости от состояния митохондриального генома.

Изучение геномов митохондрий, их эволюции, идущей по специфическим законам популяционной генетики, взаимоотношений между ядерными и митохондриальными генетическими системами, необходимо для понимания сложной иерархической организации эвкариотической клетки и организма в целом.

С определенными мутациями в митохондриальной ДНК или в ядерных генах, контролирующих работу митохондрий, связывают некоторые наследственные болезни и старение человека . Накапливаются данные об участии дефектов мтДНК в канцерогенезе. Следовательно, митохондрии могут быть мишенью химиотерапии рака. Имеются факты о тесном взаимодействии ядерного и митохондриального геномов в развитии ряда патологий человека. Множественные делеции мтДНК обнаружены у больных с тяжелой мышечной слабостью, атаксией, глухотой, умственной отсталостью, наследующихся по аутосомно-доминантному типу. Установлен половой диморфизм в клинических проявлениях ишемической болезни сердца, что скорее всего обусловлено материнским эффектом - цитоплазматической наследственностью. Развитие генной терапии внушает надежду на исправление дефектов в геномах митохондрий в обозримом будущем.

Работа выполнена при поддержке Российского фонда фундаментальных исследований. Проект 01-04-48971.
Автор признателен аспиранту М.К.Иванову, создавшему рисунки к статье.

Литература

1. Янковский Н.К., Боринская С.А. Наша история, записанная в ДНК // Природа. 2001. №6. С.10-18.

2. Минченко А.Г., Дударева Н.А. Митохондриальный геном. Новосибирск, 1990.

3. Гвоздев В.А. // Сорос. образоват. журн. 1999. №10. С.11-17.

4. Маргелис Л. Роль симбиоза в эволюции клетки. М., 1983.

5. Скулачев В.П. // Сорос. образоват. журн. 1998. №8. С.2-7.

6. Игамбердиев А.У. // Сорос. образоват. журн. 2000. №1. С.32-36.

Об авторах

Наталия Васильевна Сернова — кандидат физико-математических наук, магистр протеомики и биоинформатики Женевского университета. Научные интересы: биоинформатика, регуляция транскрипции, сравнительная геномика, эволюция млекопитающих.

Михаил Сергеевич Гельфанд — доктор биологических наук, член Европейской академии, заместитель директора Института проблем передачи информации им. А. А. Харкевича РАН, профессор факультета биоинженерии и биоинформатики Московского государственного университета им. М. В. Ломоносова. Область научных интересов — биоинформатика, сравнительная и функциональная геномика, молекулярная эволюция, системная биология, метагеномика.

Практически во всех клетках эукариот есть митохондрии - органеллы, которые нужны в первую очередь для синтеза АТФ. История симбиоза бактерий, родственных риккетсиям, и предка эукариот, в результате которого возникли митохондрии, очень интересна, однако здесь речь пойдет не о ней. Для нас сейчас будет важно лишь то, что у митохондрий есть свой собственный геном (у млекопитающих его размер 15–20 тыс. пар нуклеотидов), что у животных он передается строго по материнской линии и что в каждой клетке присутствуют десятки и даже тысячи митохондрий, а стало быть, в любом образце количество копий митохондриального генома на несколько порядков превышает число копий любого фрагмента ядерного генома. Это особенно существенно при анализе древних образцов, в которых сохранилось мало неповрежденной ДНК.

Мы будем обсуждать интрогрессию митохондриальных геномов. Интрогрессия - это форма гибридизации, при которой гены одного вида проникают в генофонд другого. В результате образуются гибриды первого поколения, способные к возвратному скрещиванию с одним или обоими родительскими видами. Если возвратное скрещивание происходит многократно в последовательных поколениях, то может возникнуть поток вариантов некоторых генов от одного вида к другому. Такой прием часто используется в селекции, когда требуется передать некий признак от одного вида другому, например устойчивость к болезням от дикого вида к культурному сорту: производят многократные возвратные скрещивания с культурным сортом, а отбор ведут по данному признаку. Постепенно в большинстве локусов остаются только аллели культурного сорта, а локусы, от которых зависит желаемый признак, наследуются от дикого вида - и в результате получается новый устойчивый сорт.

Однако интрогрессия может происходить и в результате естественной гибридизации. Известно, что межвидовая гибридизация характерна для 10% видов животных, в частности для 6% видов млекопитающих . Если все потомки родителей, принадлежащих к разным видам, далее скрещиваются с представителями только одного из них, причем многократно в ряде последовательных поколений, то возникает однонаправленный поток вариантов генов от вида, который представляет собой донора, в популяционную систему, служащую реципиентом. Таким образом, интрогрессия - это такая гибридизация, при которой поток генов и рекомбинация доходят до видового уровня. При этом из-за упомянутых особенностей наследования митохондриального генома у животных и из-за отсутствия рекомбинации их митохондриальной ДНК оказывается легко следить за интрогрессией именно митохондриальных генов. Особый интерес представляет так называемый митохондриальный захват, когда в какой-либо популяции все митохондриальные геномы происходят от одного вида, а все ядерные - от другого. Следует отметить, что это довольно строгое определение: никогда нельзя гарантировать, что в геноме гибридов не сохранилось фрагмента ядерного генома второго вида хотя бы у части особей, поскольку для этого надо проводить подробное генотипирование большого числа ядерных геномов, что долго и дорого.

Интрогрессия митохондриальных геномов ведет к тому, что филогении, построенные по митохондриальным и ядерным маркерам, оказываются несогласованными. В недавнем обзоре обобщили 126 случаев полной и неполной митохондриальной интрогрессии у животных. Большинство из этих случаев описано уже в XXI веке. Причины интрогрессии могут быть разными: селективное преимущество, демографические особенности, смещение зоны гибридизации, влияние человека, у насекомых - заражение вольбахией и разнообразные связанные с этим эффекты, например искажение соотношения полов. Чаще всего, по-видимому, действует комбинация причин. Особый интерес представляют случаи полной интрогрессии, когда на всем ареале подавляющее большинство особей имеет митохондрии, геномы которых практически совпадают с митохондриальными геномами другого вида. Такого не замечали у земноводных, зато наблюдали четыре подобных случая у птиц, пять - у рыб и два - у насекомых. Четыре случая было отмечено у млекопитающих: митохондриальный геном тара (Hemitragus jemlahicus ) у предка диких европейских коз Capra spp. , белохвостого оленя (Odocoileus virginianus ) у чернохвостого (O. hemionus ) в Северной Америке , расы Carlit обыкновенной землеройки, или бурозубки (Sorex araneus ), у иберийской (S. granarius ) и, наконец, бурого медведя (Ursus arctos ) у белого (U. maritimus ) . О медведях речь пойдет ниже, а сначала обсудим слонов.

Африканские слоны: один или два вида?

По морфологическим особенностям африканские слоны делятся на две группы: саванные (Loxodonta africana ), которые живут в сухой саванне, и лесные (L. cyclotis ), которые обитают во влажных лесах. Вопрос о статусе этих групп до сих пор остается открытым. Некоторые авторы считают эти группы подвидами , в то время как другие относят их к разным видам [8–13 ] . Расхождение лесных и саванных слонов произошло от 2,5 млн лет назад (по ядерной ДНК) до 5,5 млн лет назад (по митохондриальной ДНК) .

Ареалы этих двух групп не разделены, и существует обширная зона контакта, на которой возможна гибридизация. В ряде популяций, например, в регионе Серенгети в Восточной Африке, большинство саванных слонов имеют митохондриальный геном лесных . Это объясняют межвидовыми скрещиваниями лесных самок с саванными самцами с последующей интрогрессией. Возможный сценарий, который учитывает хорошо изученные особенности социального поведения африканских слонов , выглядит следующим образом [8–10 ].

Слоны живут большими стадами - до нескольких десятков особей. Стадо включает только самок разного возраста и их неполовозрелое потомство и возглавляется старшей самкой-матриархом. Все слоны в стаде родственны по материнской линии и имеют одинаковый митохондриальный геном. Самцы слонов, достигшие половой зрелости (12 лет), изгоняются из стада. Они тоже могут объединяться в группы, которые состоят из самцов разного возраста и где главенствуют крупные пожилые самцы.

Когда самка достигает репродуктивного возраста (10–12 лет) и у нее начинается эстральный цикл, она уходит из стада на период до нескольких недель для встречи с самцом. Затем возвращается в материнское стадо и через 22 месяца рожает детеныша, которого выкармливает около двух лет, т.е. в течение почти четырех лет самка репродуктивного возраста не готова к новому контакту. Для спаривания самки предпочитают крупных самцов.

Рассредоточение слонов по группам не приводит к полному разделению родственников мужского и женского пола, поэтому слоны способны распознавать сородичей. Учитывая, что саванные самцы предпочитают избегать инбридинга и что они крупнее лесных слонов и репродуктивно над ними доминируют, а эстральные самки встречаются редко, не исключено, что в таких условиях лесные самки заполняют освободившуюся нишу и составляют конкуренцию саванным самкам. Здесь уместно вспомнить, что корреляция между внутривидовым потоком генов и межвидовым отрицательна .

После спаривания с саванным самцом лесная самка возвращается в материнское стадо лесных слонов. Через 22 месяца на свет появляется гибрид с митохондриальным геномом лесных слонов и ядерной ДНК саванных и лесных слонов поровну. Гибридная самка начнет передавать митохондриальный геном следующим поколениям по материнской линии. Каждое возвратное скрещивание лесных или гибридных самок с саванными самцами будет уменьшать долю ядерной ДНК лесного слона наполовину. И через много поколений у гибридов ядерная ДНК саванного слона полностью заменит ядерную ДНК лесного слона. К тому же саванные самцы почти вдвое крупнее лесных, а значит, пользуются преимуществом при спаривании в том числе и с лесными и гибридными самками. Кроме того, гибридные самцы могут обладать пониженной плодовитостью согласно правилу Холдейна: если при скрещивании разных подвидов или рас жизнеспособность потомства зависит от пола, более редким (или вообще отсутствующим) будет гетерогаметный пол, то есть у млекопитающих - самцы .

Эта модель хорошо объясняет, почему в областях, далеких от зоны контакта двух групп, практически нет ни слонов с промежуточной морфологией, ни особей со смешанным - саванным с лесным - ядерным геномом, в том числе среди саванных слонов с митохондриальным геномом лесного типа. Однако она наталкивается на противоречие: поскольку самки слона возвращаются в материнское стадо, гибридные самки оказываются в стаде с лесными, а значит, не могут передать свою митохондриальную ДНК саванным слонам. Тем более не могут этого сделать гибридные самцы, ведь митохондриальный геном наследуется только по материнской линии.

Возможно, этот парадокс объясняется изменениями популяционной структуры и ареала слонов под влиянием климатических изменений и деятельности человека - хозяйственной и охоты, в том числе браконьерской. Есть наблюдения, что, когда численность натального стада у саванных слонов по тем или иным причинам падает, матриарх может принимать самок из других, неродственных, групп . Так, например, в Уганде, где популяции слонов существенно сократились из-за браконьерства, самки с разными митохондриальными гаплотипами сформировали новые социальные группы . Кроме того, раз гибридные самки имеют ядерную ДНК саванного слона, они могут быть морфологически близки к саванным сородичам, а потому их не изгоняют из стада, когда они оказываются в зоне симпатрии.

Однако недавний подробный анализ четырех популяций слонов из контактных зон показал более сложную картину (рис. 1). Среди гибридных особей ни одна не оказалась гибридом первого поколения. Это доказывает, что гибриды саванных и лесных слонов фертильны. Однако, когда построили филогенетические деревья по маркерам митохондрий (строго материнское наследование) и Y-хромосом (строго отцовское), стало очевидно, что гибридизация шла в обоих направлениях: геномы и саванных, и лесных слонов образовали по две четко выделенные ветви, так что геномы гибридных особей могли принадлежать и одной, и другой.

Тем не менее все авторы последних исследований склонны считать лесных и саванных слонов разными видами [ , ]. По мнению Эрнста Майра, гибридизация в зоне контакта необязательно означает, что мы имеем дело с одним видом - гибридами. Генетическая цельность двух видов вполне может сохраняться . В случае африканских слонов это и наблюдается: вдали от зоны контакта нет никаких следов смешения, кроме митохондриальной интрогрессии, а морфологически виды, несмотря на нее, различны.

Бурые и белые медведи: один или два вида?

Ответ кажется очевидным. Конечно, два - достаточно сходить в зоопарк и посмотреть. Однако...

Ученые из Института арктической биологии Университета Аляски исследовали популяцию бурых медведей с архипелага Александра у берегов Аляски (с островов Адмиралти, Баранова и Чичагова, которые по первым латинским буквам называют островами АВС; рис. 2). В 1996 г. они заметили, что митохондриальные геномы этих медведей больше похожи на митохондриальные геномы белых медведей (Ursus maritimus ), чем бурых (U. arctos ) из других популяций . Несколько гипотез пытались это объяснить: происхождением белых медведей из древней прибрежной популяции бурых, которая сохранилась только на островах АВС , интрогрессией митохондриальных генов бурых медведей с островов АВС в геном белых и, наоборот, интрогрессией митохондриальных генов белых медведей в геном бурых [ , ]. Предположение, что белые медведи недавно произошли от бурых, казалось бы, подтвердилось, когда секвенировали митохондриальный геном древнего (130–110 тыс. лет назад) белого медведя из челюстной кости, найденной на архипелаге Шпицберген . Оказалось, этот геном очень близок к точке ответвления митохондриальных геномов современных белых медведей и ближайших к ним бурых медведей с островов ABC.

Получается, белые медведи - это не отдельный вид, а ветвь бурых медведей, которая отделилась сравнительно недавно, не более 150 тыс. лет назад, и сильно изменилась морфологически? Более обширный анализ митохондриальных геномов указывает на еще более фантастический сценарий. Действительно, митохондриальные геномы древних белых медведей из Скандинавии ближе всего к геномам медведей с островов АВС. В то же время митохондриальные геномы современных белых медведей существенно ближе к геномам вымершей ветви бурых медведей из Ирландии - расхождение этих двух линий произошло менее 40 тыс. лет назад (рис. 3). Следует отметить, что эти же данные интерпретировали заново уже иначе - как интрогрессию митохондриальных генов белого медведя в геном бурого . Правда, это не объясняет, почему эта ветка находится в глубине большой клады бурых медведей.

Анализ же ядерных геномов показывает, что белые медведи разделились с бурыми примерно 600 тыс. лет назад (рис. 4). Согласно этой работе, в ядерных геномах не наблюдается следов (недавних) гибридизаций между белыми и бурыми медведями, однако согласно другим исследованиям 5–10% ядерного генома бурых медведей с островов АВС происходят из генома белого медведя, а расхождение видов отнесено на 4 млн лет назад . Вообще, имеет смысл отметить важное последствие гибридизации, которое, однако, существенно затрудняет датировки: она ведет к тому, что различные геномные локусы имеют разную историю. Так, еще в одной работе расхождение бурых и белых медведей датируется примерно 400 тыс. лет назад, хотя также отмечен существенный поток генов белого медведя в геном медведей с островов АВС. Наконец, следует заметить, что во многих работах отмечается меньшая эффективная численность популяции белых медведей по сравнению с бурыми и эффект бутылочного горлышка - эпизоды резкого сокращения численности популяции после разделения с бурыми [ , , ]. Расхождение Y-хромосом белого и бурого медведя, для которых не заметно признаков интрогрессии, датируется приблизительно 1,1 млн лет назад (рис. 5). Вопрос о потоке ядерных генов бурого медведя в геном белого остается противоречивым: отмечались как следы слабого потока , так и полное его отсутствие . При этом поток генов белого медведя шел и в геномы материковых бурых медведей с Аляски, хотя и был слабее . Полный список оценок дан в обзоре .

Положительный отбор в геномах белых медведей затронул гены, связанные с формированием жировой ткани, развитием сердечной мышцы и свертываемостью крови, а также пигментацией меха . В то время как интрогрессии в геном бурого медведя подвергся ген ALDH7A1 , который регулирует осмотический стресс: это могло иметь приспособительное значение для прибрежной (островной) популяции бурых медведей .

Один из главных, принципиальных открытых вопросов, который слабо обсуждается в литературе, - произошло ли полное закрепление интрогрессировавших митохондриальных генов бурого медведя во всей популяции белых медведей под действием отбора или же в силу случайного дрейфа. Второй вопрос - была ли первоначально популяция бурых медведей с островов АВС популяцией белых медведей с почти тотальной интрогрессией ядерных генов бурых медведей за счет самцов, приплывавших с материка , или же популяцией бурых медведей, в геном которой интрогрессировали митохондриальные гены белых медведей в результате одной или нескольких гибридизаций с самками белого медведя.

Ко второму вопросу стоит добавить, что географическое распределение митохондриальных гаплотипов и белых медведей, и бурых высоко структурировано, что отражает привязанность самок к месту рождения, тогда как гаплотипы Y-хромосомы перемешаны из-за частых миграций самцов . С одной стороны, это косвенно свидетельствует о том, что случайный дрейф митохондриального генома должен быть затруднен. С другой стороны, его могли облегчать колебания численности и эффект бутылочного горлышка.

Хотя основные факты - полную интрогрессию митохондриальных генов бурого медведя в геном белого (возможно, неоднократную), значительный поток ядерных генов белого медведя в геном бурых медведей с островов АВС (и возможно, с Аляски), значительные колебания численности белых медведей - по-видимому, в целом можно считать твердо установленными, детали этой эволюционной истории нуждаются в прояснении. Как и всегда, нужно больше геномов - и современных, из разных популяций, и древних.

И снова люди

Пожалуй, одна из основных загадок геномной эволюции древних людей - происхождение денисовцев. Мы уже писали об этом вопросе в предыдущих статьях [ , ], однако полезно вернуться к нему именно в контексте обсуждаемых здесь несовпадений истории ядерных и митохондриальных геномов.

Денисовцы по ядерному геному - сестринская группа с неандертальцами, однако разошлись с ними вскоре после отделения от кроманьонцев. Оценки неточны, но в первом приближении разделение кроманьонцев и денисовцев + неандертальцев произошло примерно 650 тыс. лет назад, а денисовцев и неандертальцев - около 450 тыс. лет назад. Нам известен один ядерный геном из Денисовой пещеры на Алтае (возраст - примерно 50 тыс. лет) и несколько митохондриальных геномов оттуда же, самый старый из которых датируется 110 тыс. лет назад. Кроме того, известны фрагменты денисовского генома, которые сохранились в геномах австранезийцев. Денисовский вариант гена EPAS1 практически зафиксировался в популяции тибетцев. Все это указывает на обширность ареала денисовцев.

А вот по митохондриальному геному денисовцы разделились с ветвью неандертальцев + кроманьонцев около миллиона лет назад. Этот геном ближе всего к митохондриальному геному человека возрастом около 430 тыс. лет из пещеры Сима де лос Уэсос в Испании. Однако получается парадокс: ядерный геном из пещеры Сима де лос Уэсос ближе к неандертальскому, чем к денисовскому (авторы оригинальной статьи не приводят оценок времени расхождения). Таким образом, нет никакого простого сценария, который бы включал лишь интрогрессию, чтобы объяснить эти наблюдения. Авторы предполагают, что митохондриальные геномы из Денисовой пещеры и Сима де лос Уэсос - прямые потомки геномов древнего выходца из Африки, предка неандертальцев и денисовцев, кем бы он ни был с антропологической точки зрения, а митохондриальные геномы неандертальцев - результат поздней интрогрессии африканского же происхождения. В пользу этой гипотезы говорит то, что в геноме алтайского неандертальца обнаружены кроманьонские фрагменты, причем это следы гибридизации, предшествовавшей выходу из Африки предка современных европейцев и азиатов . Однако такие фрагменты отсутствуют в геномах других неандертальцев, в то время как митохондриальные геномы всех неандертальцев очевидно образуют единую ветвь на филогенетическом дереве. Кроме того, возникают проблемы с датировкой: носитель кроманьонских фрагментов в геноме алтайского неандертальца отделился от остальных кроманьонцев примерно 250 тыс. лет назад (до начала разделения современных популяций в Африке), а разделение митохондриальных ветвей кроманьонцев и неандертальцев датируется примерно 500 тыс. лет назад. Получается, это не могло быть результатом одного события. Альтернативное объяснение состоит в том, что источник митохондриальной ДНК денисовцев и человека из пещеры Сима де лос Уэсос - неизвестные представители рода Homo (H. erectus ?). Однако оно также не дает простого ответа на вопрос, где, когда и с кем произошла эта гибридизация.

Удивительно не то, что мы не знаем ответов на многие вопросы. Удивительно то, что мы можем эти вопросы задавать и надеемся получить на них ответы.

Н. В. Сернова благодарна своей маме Наталии Владимировне Серновой за вдохновение и помощь. М. С. Гельфанд благодарен фонду «Эволюция» за поддержку научно-популярных лекций, подготовка к которым помогла лучше осознать изложенный материал.

Работа выполнена при поддержке Российского научного фонда (проект 14-24-00155).

Литература
. Mallet J. Hybridization as an invasion of the genome // Trends Ecol. Evol. 2005. V. 20. P. 229–237.
. Toews D. P. L., Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals // Mol. Ecol. 2012. V. 21. P. 3907–3930.
. Ropiquet A., Hassanin A. Hybrid origin of the Pliocene ancestor of wild goats // Mol. Phylogenet. Evol. 2006. V. 41. P. 395–404.
. Cathey J. C., Bickham J. W., Patton J. C. Introgressive hybridization and nonconcordant evolutionary history of maternal and paternal lineages in North American deer // Evolution . 1998. V. 52. P. 1224–1229.
. Yannic G., Dubey S., Hausser J. et al. Additional data for nuclear DNA give new insights into the phylogenetic position of Sorex granarius within the Sorex araneus group // Mol. Phylogenet. Evol. 2010. V. 57. P. 1062–1071.
. Edwards C. J., Suchard M. A., Lemey P. et al. Ancient hybridization and an Irish origin for the modern polar bear matriline // Curr. Biol. 2011. V. 21. P. 1251–1258.
. Debruyne R. A case study of apparent conflict between molecular phylogenies: the interrelationships of African elephants // Cladistics . 2005. V. 21. P. 31–50.
. Cyto-nuclear genomic dissociation and the African elephant species question // Quat. Int. 2007. V. 169–170. P. 4–16.
. Roca A. L., Ishida Y., Brandt A. L. et al. Elephant natural history: a genomic perspective // Annu. Rev. Anim. Biosci. 2015. V. 3. P. 139–167.
. Roca A. L., Georgiadis N., O’Brien S. J. Cytonuclear genomic dissociation in African elephant species // Nat. Genet. 2005. V. 37. P. 96–100.
. Grubb P., Groves C. P., Dudley J. P. et al. Living African elephants belong to two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis (Matschie, 1900) // Elephant . 2000. V. 2. P. 1–4.

Вступление

Со времени обнаружения в митохондриях молекул ДНК прошло четверть ве-ка, прежде чем ими заинтересовались не только молекулярные биологи и цито-логи, но и генетики, эволюционисты, а также палеонтологи и криминалисты. Такой широкий интерес спровоцировала работа А. Уилсона из Калифорнийско-го университета. В 1987 г. он опубликовал результаты сравнительного анализа ДНК митохондрий, взятых у 147 представителей разных этносов всех человече-ских рас, заселяющих пять континентов. По типу, местоположению и количес-тву индивидуальных мутаций установили, что все митохондриальные ДНК воз-никли из одной предковой последовательности нуклеотидов путем диверген-ции . В околонаучной прессе вывод этот интерпретировали крайне упрощенно - все человечество произошло от одной женщины, названной митохондриаль-ной Евой (т. к. и дочери и сыновья получают митохондрии только от матери), которая жила в Северо-Восточной Африке около 200 тыс. лет назад. Еще через 10 лет удалось расшифровать фрагмент ДНК митохондрий, выделенный из ос-танков неандертальца, и оценить время существования последнего общего предка человека и неандертальца в 500 тыс. лет назад.

Сегодня митохондриальная генетика человека интенсивно развивается как в популяционном, так и в медицинском аспекте. Установлена связь между рядом тяжелых наследственных заболеваний и дефектами в митохондриальных ДНК. Генетические изменения, ассоциированные со старением организма, наиболее выражены в митохондриях. Что же представляет из себя геном митохондрий, отличающийся у человека и других животных от такового у растений, грибов и простейших и по размеру, и по форме, и по генетической емкости? Какова роль, как работает и как возник митохондриальный геном у разных таксонов в целом и у человека в частности? Об этом и пойдет речь в моем “маленьком и самом скромном” реферате.

В матриксе митохондрий, кроме ДНК, находятся и собственные рибосомы, по многим характеристикам отличающиеся от эвкариотических рибосом, рас-положенных на мембранах эндоплазматической сети. Однако на рибосомах ми-тохондрий образуется не более 5% от всех белков, входящих в их состав. Бóль-шая часть белков, составляющих структурные и функциональные компоненты митохондрий, кодируется ядерным геномом, синтезируется на рибосомах эндо-плазматической сети и транспортируется по ее каналам к месту сборки. Таким образом, митохондрии - это результат объединенных усилий двух геномов и двух аппаратов транскрипции и трансляции. Некоторые субъединичные ферме-нты дыхательной цепи митохондрий состоят из разных полипептидов, часть ко-торых кодируется ядерным, а часть - митохондриальным геномом. Например, ключевой фермент окислительного фосфорилирования - цитохром-с-оксидаза у дрожжей состоит из трех субъединиц, кодируемых и синтезируемых в мито-хондриях, и четырех, кодируемых в ядре клетки и синтезируемых в цитоплазме. Экспрессией большинства генов митохондрий управляют определенные гены ядер.

Симбиотическая теория происхождения митохондрий

Гипотезу о происхождении митохондрий и растительных пластид из вну-триклеточных бактерий-эндосимбионтов высказал Р. Альтман еще в 1890 г. За век бурного развития биохимии , цитологии , генетики и появившейся полвека назад молекулярной биологии гипотеза переросла в теорию, основанную на бо-льшом фактическом материале. Суть ее такова: с появлением фотосинтезирую-щих бактерий в атмосфере Земли накапливался кислород - побочный продукт их метаболизма. С ростом его концентрации усложнялась жизнь анаэробных ге-теротрофов, и часть из них для получения энергии перешла от бескислородного брожения к окислительному фосфорилированию. Такие аэробные гетеротрофы могли с бóльшим КПД, чем анаэробные бактерии, расщеплять органические ве-щества, образующиеся в результате фотосинтеза. Часть свободно живущих аэ-робов была захвачена анаэробами, но не “переварена”, а сохранена в качестве энергетических станций, митохондрий. Не стоит рассматривать митохондрии как рабов, взятых в плен, чтобы снабжать молекулами АТФ не способные к ды-ханию клетки. Они скорее “существа”, еще в протерозое нашедшие для себя и своего потомства лучшее из убежищ, где можно затрачивать наименьшие уси-лия, не подвергаясь риску быть съеденными.

В пользу симбиотической теории говорят многочисленные факты:

Совпадают размеры и формы митохондрий и свободно живущих аэробных бактерий; те и другие содержат кольцевые молекулы ДНК, не связанные с гистонами (в отличие от линейных ядерных ДНК);

По нуклеотидным последовательностям рибосомные и транспортные РНК митохондрий отличаются от ядерных, демонстрируя при этом удивительное сходство с аналогичными молекулами некоторых аэробных грамотрицательных эубактерий;

Митохондриальные РНК-полимеразы, хотя и кодируются в ядре клетки, ингибируются рифампицином, как и бактериальные, а эвкариотические РНК-полимеразы нечувствительны к этому антибиотику ;

Белковый синтез в митохондриях и бактериях подавляется одними и теми же антибиотиками, не влияющими на рибосомы эвкариот;

Липидный состав внутренней мембраны митохондрий и бактериальной плазмалеммы сходен, но сильно отличается от такового наружной мембраны митохондрий, гомологичной другим мембранам эвкариотических клеток;

Кристы, образуемые внутренней митохондриальной мембраной, являются эволюционными аналогами мезосомных мембран многих прокариот;

До сих пор сохранились организмы, имитирующие промежуточные формы на пути к образованию митохондрий из бактерий (примитивная амеба Pelomyxa не имеет митохондрий, но всегда содержит эндосимбиотические бактерии).

Существует представление, что разные царства эвкариот имели разных предков и эндосимбиоз бактерий возникал на разных этапах эволюции живых организмов. Об этом же говорят отличия в строении митохондриальных гено-мов простейших, грибов, растений и высших животных. Но во всех случаях ос-новная часть генов из промитохондрий попала в ядро, возможно, с помощью мобильных генетических элементов. При включении части генома одного из симбионтов в геном другого интеграция симбионтов становится необратимой. Новый геном может создавать метаболические пути, приводящие к образова-нию полезных продуктов, которые не могут быть синтезированы ни одним из партнеров по отдельности. Так, синтез стероидных гормонов клетками коры надпочечников представляет собой сложную цепь реакций, часть которых происходит в митохондриях, а часть - в эндоплазматической сети. Захватив гены промитохондрий, ядро получило возможность надежно контролировать функции симбионта. В ядре кодируются все белки и синтез липидов наружной мембраны митохондрий, большинство белков матрикса и внутренней мембраны органелл. Самое главное, что ядро кодирует ферменты репликации, транскрип-ции и трансляции мтДНК, контролируя тем самым рост и размножение мито-хондрий. Скорость роста партнеров по симбиозу должна быть приблизительно одинаковой. Если хозяин будет расти быстрее, то с каждым его поколением число симбионтов, приходящихся на одну особь, будет уменьшаться, и, в конце концов, появятся потомки, не имеющие митохондрий. Мы знаем, что в каждой клетке организма, размножающегося половым путем, содержится много мито-хондрий, реплицирующих свои ДНК в промежутке между делениями хозяина. Это служит гарантией того, что каждая из дочерних клеток получит по крайней мере одну копию генома митохондрии.

Роль клеточного ядра в биогенезе митохондрий

У мутантных дрожжей определенного типа имеется обширная делеция в митохондриальной ДНК, что ведет к полному прекращению белкового синтеза в митохондриях; в результате эти органеллы не способны выполнять, свою функцию. Так как при росте на среде с низким содержанием глюкозы такие мутанты образуют мелкие колонии, их называют цитоплазматическими му тантами petite .

Хотя у мутантов petite нет митохондриального синтеза белков и поэтому нормальных митохондрий не образуется, тем не менее такие мутанты содержат промитохондрии, которые в известной мере сходны с обычными митохондриями, имеют нормальную наружную мембрану и внутреннюю мeмбрану со слабо развитыми кристами. В промитохондриях имеются многие ферменты, кодируемые ядерными генами и синтезируемые на рибосомах цитоплазмы, в том числе ДНК - и РНК-полимеразы, все ферменты цикла лимонной кислоты и многие белки, входящие в состав внутренней мембраны. Это наглядно демонстрирует преобладающую роль ядерного генома в биогенезе митохондрий.

Интересно отметить, что, хотя утраченные фрагменты ДНК составляют от 20 до более чем 99,9% митохондриального генома, общее количество митохондриальной ДНК у мутантов petite всегда остается на том же уровне, что и у дикого типа. Это обусловлено еще мало изученным процессом aмплификации ДНК, в результате которого образуется молекула ДНК, состоящая из тандемных повторов одного и того же участка и равная по величине нормальной молекуле. Например, митохондриальная ДНК мутанта petite, сохранившая 50% нуклеотидной последовательности ДНК дикого типа, будет состоять из двух повторов, тогда как молекула, сохранившая только 0,1% генома дикого типа, будет построена из 1000 копий оставшегося фрагмента. Таким образом, мутанты petite могут быть использованы для получения в большом количестве определенных участков митохондриальной ДНК, которые, можно сказать, клонируются самой природой.

Хотя биогенез органелл контролируется главным образом ядерными генами, сами органеллы тоже, судя по некоторым данным, оказывают какое-то регулирующее влияние по принципу обратной связи; во всяком случае так обстоит дело с митохондриями. Если блокировать синтез белка в митохондриях интактных клеток, то в цитоплазме начинают в избытке образовываться ферменты участвующие в митохондриальном синтезе ДНК, РНК и белков, как будто клетка пытается преодолеть воздействие блокирующего агента. Но, хотя существование какого-то сигнала со стороны митохондрий и не вызывает сомнений, природа его до сих пор не известна.

По ряду причин механизмы биогенеза митохондрий изучают сейчас в большинстве случаев на культурах Saccharomyces carlsbergensis (пивные дрожжи и S . cerevisiae (пекарские дрожжи). Во-первых, при росте на глюкозе эти дрожжи обнаруживают уникальную способность существовать только за счет гликолиза, т. е. обходиться без функции митохондрий. Это дает возможность изучать мутации в митохондриальной и ядерной ДНК, препятствующие развитию этих органелл. Такие мутации летальны почти у всех других организмов. Во-вторых, дрожжи - простые одноклеточные эукариоты - легко культивировать и подвергать биохимическому исследованию. И наконец, дрожжи могут размножаться как в гаплоидной, так и в диплоидной фазе, обычно бесполым способом-почкованием (асимметричный митоз). Но у дрожжей встречается и половой процесс: время от времени две гаплоидные клетки сливаются, образуя диплоидную зиготу, которая затем либо делится путем митоза, либо претерпевает мейоз и снова дает гаплоидные клетки. Контролируя в ходе эксперимента чередование бесполого и полового раз-множения, можно многое узнать о генах, ответственных за функцию митохондрий. С помощью этих методов можно, в частности, выяснить, локализованы ли такие гены в ядерной ДНК или в митохондриальной, так как мутации митохондриальных генов не наследуются по законам Менделя, которым подчиняется наследование ядерных генов.

Транспортные системы митохондрий

Большая часть белков, содержащихся в митохондриях и хлоропластах импор-тируется в эти органеллы из цитозоля. В связи с этим возникают два вопроса: как клетка направляет белки к надлежащей органелле и каким образом эти белки проникают в нее?

Частичный ответ был получен при изучении транспорта в строму хлоропласта малой субъединицы (S) фермента рибулозо-1,5-бисфосфат-карбокси лазы. Если мРНК, выделенную из цитоплазмы одноклеточной водоросли Chlamydomonas или из листьев гороха, ввести в качестве матрицы в белоксинтезирующую систему in vitro, то один из многих образующихся белков будет связываться специфическим анти-S-антителом. S-белок, синтезируемый in vitro, называют пpo-S, так как он больше обычного S-белка примерно на 50 аминокислотных остатков. При инкубации белка пpo-S с интактными хлоропластами он проникает в органеллы и превращается там под действием пептидазы в S-белок. Затем S-белок связывается с большой субъединицей рибулозо-1,5-бисфосфат-карбоксилазы, синтезируемой на рибосомах хлоропласта, и образует с нею в строме хлоропласта активный фермент.

Механизм переноса S-белка неизвестен. Полагают, что пpo-S связывается с белком-рецептором, находящимся на наружной мембране хлоропласта или в месте контакта наружной и внутренней мембран, а затем переносится в строму через трансмембранные каналы в результате процесса, требующего затраты энергии.

Сходным образом осуществляется транспорт белков внутрь митохондрий. Если очищенные митохондрии дрожжей инкубировать с клеточным экстрактом, содержащим только что синтезированные радиоактивные дрожжевые белки, то можно наблюдать, что митохондриальные белки, кодируемые ядерным геномом, отделяются от немитохондриальных белков цитоплазмы и избирательно включаются в митохондрии-так же, как это происходит в интактной клетке. При этом белки наружной и внутренней мембран, матрикса и межмембранного пространства находят свой путь к соответствующему компартменту митохондрии.

Многие из вновь синтезированных белков, предназначенных для внутренней мембраны, матрикса и межмембранного пространства, имеют на своем N-конце лидерный пептид, который во время транспортировки отщепляется специфической протеазой, находящейся в матриксе. Для переноса белков в эти три митохондриальных компартмента необходима энергия электрохимического протонного градиента, создаваемого на внутренней мембране. Механизм переноса белков для наружной мембраны иной: в этом случае не требуется ни затрат энергии, ни протеолитического расщепления более длинного белка-предшественника. Эти и другие наблюдения позволяют думать, что все четыре группы митохондриальных белков транспортируются в органеллу с помощью следующего механизма: предполагается, что все белки, кроме тех, которые предназначены для наружной мембраны, включаются во внутреннюю мембрану в результате процесса, требующего затраты энергии и происходящего в местах контакта наружной и внутренней мембран. По-видимому, после этого первоначального включения белка в мембрану он подвергается протеолитическому расщеплению, которое приводит к изменению его конформации; в зависимости от того, как изменится конформация, белок либо закрепляется в мембране, либо «выталкивается» в матрикс или в межмембранное пространство.

Перенос белков через мембраны митохондрий и хлоропластов в принципе аналогичен переносу их через мембраны эндоплазматического ретикулума. Однако здесь есть несколько важных отличий. Во-первых, при транспорте в матрикс или строму белок проходит как через наружную, так и через внутреннюю мембрану органеллы, тогда как при переносе в просвет эндоплазматического ретикулума молекулы проходят только через одну мембрану. Кроме того, перенос белков в ретикулум осуществляется с помощью механизма направленного выведения (vectorial discharge)-он начинается тогда, когда белок еще не полностью сошел с рибосомы (котрансляционный импорт), а перенос в митохондрии и хлоропласты происходит уже после того, как синтез белковой молекулы будет полностью завершен (посттрансляционный импорт).

Несмотря на эти различия, и в том и в другом случае клетка синтезирует белки-предшественники, содержащие сигнальную последовательность, которая определяет, к какой мембране направится данный белок. По-видимому, во многих случаях эта последовательность отщепляется от молекулы-предшественника после завершения транспортного процесса. Однако некоторые белки сразу синтезируются в окончательном виде. Полагают, что в таких случаях сигнальная последовательность заключена в полипептидной цепи готового белка. Сигнальные последовательности еще плохо изучены, но, вероятно, должно быть несколько типов таких последовательностей, каждый из которых определяет перенос белковой молекулы в определенную область клетки. Например, в растительной клетке некоторые из белков, синтез которых начинается в цитозоле, транспортируются затем в митохондрии, другие - в хлоропласты, третьи - в пероксисомы, четвертые - в эндоплазматический ретикулум. Сложные процессы, приводящие к правильному внутриклеточному распределению белков, только сейчас становятся понятными.

Помимо нуклеиновых кислот и белков для построения новых митохондрий нужны липиды. В отличие от хлоропластов митохондрии получают бóльшую часть своих липидов извне. В животных клетках фосфолипиды, синтезированные в эндоплазматическом ретикулуме, транспортируются к наружной мембране митохондрий с помощью особых белков, а затем включаются во внутреннюю мембрану; как полагают, это происходит в месте контакта двух мембран. Основная реакция биосинтеза липидов, катализируемая самими митохондриями, - это превращение фосфатидной кислоты в фосфолипид кардиолипин, который содержится главным образом во внутренней митохондриальной мембране и составляет около 20% всех ее липидов.

Размеры и форма митохондриальных геномов

К настоящему времени прочитано более 100 разных геномов митохондрий. На-бор и количество их генов в митохондриальных ДНК, для которых полностью определена последовательность нуклеотидов, сильно различаются у разных ви-дов животных, растений, грибов и простейших. Наибольшее количество генов обнаружено в митохондриальном геноме жгутикового простейшего Rectinomo-nas americana - 97 генов, включая все кодирующие белок гены, найденные в мтДНК других организмов. У большинства высших животных геном митохон-дрий содержит 37 генов: 13 для белков дыхательной цепи, 22 для тРНК и два для рРНК (для большой субъединицы рибосом 16S рРНК и для малой 12S рРНК). У растений и простейших, в отличие от животных и большинства гри-бов, в митохондриальном геноме закодированы и некоторые белки, входящие в состав рибосом этих органелл. Ключевые ферменты матричного полинуклеоти-дного синтеза, такие как ДНК-полимераза (осуществляющая репликацию мито-хондриальной ДНК) и РНК-полимераза (транскрибирующая геном митохон-дрий), зашифрованы в ядре и синтезируются на рибосомах цитоплазмы. Этот факт указывает на относительность автономии митохондрий в сложной иерар-хии эвкариотической клетки.

Геномы митохондрий разных видов отличаются не только по набору ге-нов, порядку их расположения и экспрессии, но по размеру и форме ДНК. По-давляющее большинство описанных сегодня митохондриальных геномов пред-ставляет собой кольцевые суперспирализованные двуцепочечные молекулы ДНК. У некоторых растений наряду с кольцевыми формами имеются и линей-ные, а у некоторых простейших, например инфузорий, в митохондриях обнару-жены только линейные ДНК.

Как правило, в каждой митохондрии содержится несколько копий ее ге-нома. Так, в клетках печени человека около 2 тыс. митохондрий, и в каждой из них - по 10 одинаковых геномов. В фибробластах мыши 500 митохондрий, со-держащих по два генома, а в клетках дрожжей S. cerevisiae - до 22 митохон-дрий, имеющих по четыре генома.

https://pandia.ru/text/78/545/images/image002_21.jpg" align="left" width="386 height=225" height="225">Рис 2. Схема образования линейных (А), кольцевых (Б), цепных (В) олигомеров мтДНК. ori - район начала репликации ДНК.

Размер генома митохондрий разных организмов колеблется от менее 6 тыс. пар нуклеотидов у малярийного плазмодия (в нем, помимо двух генов рРНК, содержится только три гена, кодирующих белки) до сотен тысяч пар ну-клеотидов у наземных растений (например, у Arabidopsis thaliana из семейства крестоцветных 366924 пар нуклеотидов). При этом 7-8-кратные различия в ра-змерах мтДНК высших растений обнаруживаются даже в пределах одного се-мейства. Длина мтДНК позвоночных животных отличается незначительно: у человека - 16569 пар нуклеотидов, у свиньи - 16350, у дельфина - 16330, у шпорцевой лягушки Xenopus laevis - 17533, у карпа - 16400. Эти геномы схо-дны также и по локализации генов, большинство которых располагаются встык; в ряде случаев они даже перекрываются, обычно на один нуклеотид, так что по-следний нуклеотид одного гена оказывается первым в следующем. В отличие от позвоночных, у растений, грибов и простейших мтДНК содержат до 80% не-кодирующих последовательностей. У разных видов порядок генов в геномах митохондрий отличается.

Высокая концентрация активных форм кислорода в митохондриях и сла-бая система репарации увеличивают частоту мутаций мтДНК по сравнению с ядерной на порядок. Радикалы кислорода служат причиной специфических за-мен Ц®Т (дезаминирование цитозина) и Г®Т (окислительное повреждение гуанина), вследствие чего, возможно, мтДНК богаты АТ-парами. Кроме того, все мтДНК обладают интересным свойством - они не метилируются, в отли-чие от ядерных и прокариотических ДНК. Известно, что метилирование (време-нная химическая модификация нуклеотидной последовательности без наруше-ния кодирующей функции ДНК) - один из механизмов программируемой инактивации генов.

Размеры и строение молекул ДНК в органеллах

Структура

Масса, млн.

дальтон

Примечания

охон

дриа

Животные

Кольцевая

У каждого отдельного вида все молекулы одного размера

Высшие ра

стения

Кольцевая

Варьирует

У всех изученных видов имеются разные по величине кольцевые ДНК, в которых общее содержание генетической информации соответ-ствует массе от 300 до 1000 млн. дальтон в зависимости от вида

Грибы:

Простейшие

Кольцевая

Кольцевая

Кольцевая

Линейная

Хлор

опла

стов

Водоросли

Кольцевая

Кольцевая

Высшие

растения

Кольцевая

У каждого отдельного вида найдены молекулы только одного

Относительное количество ДНК органелл в некоторых клетках и тканях

Организм

Ткань или

тип клеток

Число мол-л ДНК/органел-

Число орга-

нелл в

клетке

Доля ДНК орга-нелл во всей

ДНК клетки, %

охон

дриа

Клетки линии L

Яйцеклетка

Хлор

опла

стов

Вегетативные диплоидные клетки

Кукуруза

Функционирование митохондриального генома

Что же особенного в механизмах репликации и транскрипции ДНК митохондрий млекопитающих?

Комплементарий" href="/text/category/komplementarij/" rel="bookmark">комплементарные цепи в мтДНК значительно различаются по удельной плотности, поскольку содержат неодинаковое количе-ство “тяжелых” пуриновых и “легких” пиримидиновых нуклеотидов. Так они и называются - H (heavy - тяжелая) и L (light - легкая) цепь. В начале репли-кации молекулы мтДНК образуется так называемая D-петля (от англ. Displace-ment loop - петля смещения). Эта структура, видимая в электронный микро-скоп, состоит из двуцепочечного и одноцепочечного (отодвинутой части Н-цепи) участков. Двуцепочечный участок формируется частью L-цепи и компле-ментарным ей вновь синтезированным фрагментом ДНК длиной 450-650 (в зависимости от вида организма) нуклеотидов, имеющим на 5"-конце рибонук-леотидную затравку, которая соответствует точке начала синтеза Н-цепи (oriH). Синтез L-цепи начинается лишь тогда, когда дочерняя Н-цепь доходит до точки ori L. Это обусловлено тем, что область инициации репликации L-цепи доступ-на для ферментов синтеза ДНК лишь в одноцепочечном состоянии, а следовате-льно, только в расплетенной двойной спирали при синтезе Н-цепи. Таким обра-зом, дочерние цепи мтДНК синтезируются непрерывно и асинхронно (рис.3).

Рис 3. Схема репликации мтДНК млекопитающих. Сначала формируется D-петля, затем синтезируется дочерняя Н-цепь, потом начинается синтез дочерней L-цепи.

Кон-це гена 16S рРНК (рис.4). Таких коротких транскриптов в 10 раз больше, чем длинных. В результате созревания (процессинга) из них образуются 12S рРНК и 16S рРНК, участвующие в формировании митохондриальных рибосом, а так-же фенилаланиновая и валиновая тРНК. Из длинных транскриптов вырезаются остальные тРНК и образуются транслируемые мРНК, к 3"-концам которых при-соединяются полиадениловые последовательности. 5"-концы этих мРНК не кэ-пируются, что необычно для эвкариот. Сплайсинга (сращивания) не происхо-дит, поскольку ни один из митохондриальных генов млекопитающих не содер-жит интронов.

Рис 4. Транскрипция мтДНК человека, содержащей 37 генов. Все транскрипты начинают синтезироваться в районе ori H. Рибосомные РНК вырезаются из длинного и короткого транскриптов Н-цепи. тРНК и мРНК образуются в результате процессинга из транскриптов обеих цепей ДНК. Гены тРНК обозначены светло-зеленым цветом.

Хотите узнать какие еще сюрпризы способен преподнести митохон-дриальный геном? Отлично! Читаем дальше!..

Лидерную и 3"-некодирующую области, как и большинство ядерных мРНК. Ряд генов содержит еще и интроны. Так, в гене box, кодирующем цитохром-оксидазу b, имеется два интрона. Из первичного РНК-транскрипта автокатали-тически (без участия каких-либо белков) вырезается копия большей части пер-вого интрона. Оставшаяся РНК служит матрицей для образования фермента ма-туразы, участвующей в сплайсинге. Часть ее аминокислотной последовательно-сти закодирована в оставшихся копиях интронов. Матураза вырезает их, разру-шая свою собственную мРНК, копии экзонов сшиваются, и образуется мРНК для цитохромоксидазы b (рис.5). Открытие такого феномена заставило пере-смотреть представление об интронах, как о “ничего не кодирующих последова-тельностях”.

Рис 5. Процессинг (созревание) мРНК цитохромоксидазы b в митохондриях дрожжей. На первом этапе сплайсинга образуется мРНК, по которой синтезируется матураза, необходимая для второго этапа сплайсинга.

При изучении экспрессии митохон-дриальных генов Trypanosoma brucei обнаружилось удивительное отклонение от одной из основных аксиом молекулярной биологии, гласящей, что после-довательность нуклеотидов в мРНК в точности соответствует таковой в коди-рующих участках ДНК. Оказалось, мРНК одной из субъединиц цитохром-с-оксидазы редактируется, т. е. после транскрипции изменяется ее первичная структура - вставляется четыре урацила. В результате образуется новая мРНК, служащая матрицей для синтеза дополнительной субъединицы фермента, пос-ледовательность аминокислот в которой не имеет ничего общего с последова-Вирус" href="/text/category/virus/" rel="bookmark">вирусов , грибов, расте-ний и животных. Английский исследователь Беррел сопоставил структуру од-ного из митохондриальных генов теленка с последовательностью аминокислот в кодируемой этим геном субъединице цитохромоксидазы. Оказалось, что гене-тический код митохондрий крупного рогатого скота (как и человека) не просто отличается от универсального, он “идеален”, т. е. подчиняется следующему пра-вилу: “если два кодона имеют два одинаковых нуклеотида, а третьи нуклеоти-ды принадлежат к одному классу (пуриновых - А, Г, или пиримидиновых - У, Ц), то они кодируют одну и ту же аминокислоту”. В универсальном коде есть два исключения из этого правила: триплет АУА кодирует изолейцин, а кодон АУГ - метионин, в то время как в идеальном коде митохондрий оба эти трип-лета кодируют метионин; триплет УГГ кодирует лишь триптофан, а триплет УГА - стоп-кодон. В универсальном коде оба отклонения касаются прин-ципиальных моментов синтеза белка: кодон АУГ - инициирующий, а стоп-кодон УГА останавливает синтез полипептида. Идеальный код присущ не всем описанным митохондриям, но ни у одной из них нет универсального кода. Мож-но сказать, что митохондрии говорят на разных языках, но никогда - на языке ядра.

Различия между “универсальным” генетическим кодом и двумя митохондриальными кодами

Кодон

Митохондриальный

код млекопитающих

Митохондриальный

код дрожжей

Универсальный

Как уже говорилось, в митохондриальном геноме позвоночных есть 22 ге-на тРНК. Каким же образом такой неполный набор обслуживает все 60 кодонов для аминокислот (в идеальном коде из 64 триплетов четыре стоп-кодона, в уни-версальном - три)? Дело в том, что при синтезе белка в митохондриях упроще-ны кодон-антикодонные взаимодействия - для узнавания используется два из трех нуклеотидов антикодона. Таким образом, одна тРНК узнает все четыре представителя кодонового семейства, отличающиеся только третьим нуклеоти-дом. Например, лейциновая тРНК с антикодоном ГАУ встает на рибосоме на-против кодонов ЦУУ, ЦУЦ, ЦУА и ЦУГ, обеспечивая безошибочное включе-ние лейцина в полипептидную цепь. Два других лейциновых кодона УУА и УУГ узнаются тРНК с антикодоном ААУ. В целом, восемь разных молекул тРНК узнают восемь семейств по четыре кодона в каждом, и 14 тРНК узнают разные пары кодонов, каждая из которых шифрует одну аминокислоту.

Важно, что ферменты аминоацил-тРНК-синтетазы, ответственные за при-соединение аминокислот к соответствующим тРНК митохондрий, кодируются в ядре клетки и синтезируются на рибосомах эндоплазматической сети. Таким образом, у позвоночных животных все белковые компоненты митохондриаль-ного синтеза полипептидов зашифрованы в ядре. При этом синтез белков в ми-тохондриях не подавляется циклогексимидом, блокирующим работу эвкариоти-ческих рибосом, но чувствителен к антибиотикам эритромицину и хлорамфени-колу, ингибирующим белковый синтез в бактериях. Этот факт служит одним из аргументов в пользу происхождения митохондрий из аэробных бактерий при симбиотическом образовании эвкариотических клеток.

Значение наличия собственной генетической системы для митохондрий

Почему митохондриям необходима собственная генетическая система, тогда как другие органеллы, например пероксисомы и лизосомы ее не имеют? Этот вопрос совсем не тривиален, так как поддержание отдельной генетической сис-темы дорого обходится клетке, если учесть необходимое количество дополни-тельных генов в ядерном геноме. Здесь должны быть закодированы рибосом-ные белки, аминоацил-тРНК-синтетазы, ДНК - и РНК-полимеразы, ферменты процессинга и модификации РНК и т. д. Большинство изученных белков из митохондрий отличаются по аминокислотной последовательности от своих аналогов из других частей клетки, и есть основание полагать, что в этих органе-ллах очень мало таких белков, которые могли бы встретиться еще где-нибудь. Это означает, что только для поддержания генетической системы митохондрий в ядерном геноме должно быть несколько десятков дополнительных генов. При-чины такого “расточительства” неясны, и надежда на то, что разгадка будет найдена в нуклеотидной последовательности митохондриальной ДНК, не опра-вдалась. Трудно представить себе, почему образующиеся в митохондриях бел-ки должны непременно синтезироваться именно там, а не в цитозоле.

Обычно существование генетической системы в энергетических органеллах объясняют тем, что некоторые из синтезируемых внутри органеллы белков слишком гидрофобны, чтобы пройти сквозь митохондриальную мембрану из-вне. Однако изучение АТР-синтетазного комплекса показало, что такое объясне-ние неправдоподобно. Хотя отдельные белковые субъединицы АТР-синтетазы весьма консервативны в ходе эволюции, места их синтеза изменяются. В хлоропластах несколько довольно гидрофильных белков, в том числе четыре из пяти субъединиц F1-ATPазной части комплекса, образуются на рибосомах внутри органеллы. Напротив, у гриба Neurospora и в животных клетках весьма гидрофобный компонент (субъединица 9) мембранной части АТРазы синтези-руется на рибосомах цитоплазмы и лишь после этого переходит в органеллу. Различную локализацию генов, кодирующих субъединицы функционально эквивалентных белков у разных организмов, трудно объяснить с помощью какой бы то ни было гипотезы, постулирующей определенные эволюционные преимущества современных генетических систем митохондрий и хлоропластов.

Учитывая все вышесказанное, остается только предположить, что генетическая система митохондрий представляет собой эволюционный тупик. В рамках эндо-симбиотической гипотезы это означает, что процесс переноса генов эндосимбионта в ядерный геном хозяина прекратился раньше, чем был полностью завершен.

Цитоплазматическая наследственность

Последствия цитоплазматической передачи генов для некоторых животных, в том числе и для человека, более серьезны, нежели для дрожжей. Две сливающиеся гаплоидные дрожжевые клетки имеют одинаковую величину и вносят в образующуюся зиготу одинаковое количество митохондриальной ДНК. Таким образом, у дрожжей митохондриальный геном наследуется от обоих родителей, которые вносят равный вклад в генофонд потомства (хотя, спустя несколько генераций отдельные потомки нередко будут содержать митохондрии только одного из родительских типов). В отличие от этого у высших животных яйцеклетка вносит в зиготу больше цитоплазмы чем спермий, а у некоторых животных спермии могут вообще не вносить цитоплазмы. Поэтому можно думать, что у высших животных митохондриальный геном будет передаваться только от одного родителя (а именно по материнской линии); и действительно, это было подтверждено экспериментами. Оказалось, например, что при скрещивании крыс двух лабораторных линий с митохондриальной ДНК, слегка различающейся по пocледовательности нуклеотидов (типы А и В), получается потомство, содержа-

щее митохондриальную ДНК только материнского типа.

Цитоплазматическая наследственность, в отличие от ядерной, не под-чиняется законам Менделя. Это связано с тем, что у высших животных и расте-ний гаметы от разных полов содержат несопоставимые количества митохон-дрий. Так, в яйцеклетке мыши имеется 90 тыс. митохондрий, а в сперматозоиде - лишь четыре. Очевидно, что в оплодотворенной яйцеклетке митохондрии преимущественно или только от женской особи, т. е. наследование всех мито-хондриальных генов материнское. Генетический анализ цитоплазматической наследственности затруднен из-за ядерно-цитоплазматических взаимодействий. В случае цитоплазматической мужской стерильности мутантный митохон-дриальный геном взаимодействует с определенными генами ядра, рецессивные аллели которых необходимы для развития признака. Доминантные аллели этих генов как в гомо-, так и в гетерозиготном состоянии восстанавливают фертиль-ность растений вне зависимости от состояния митохондриального генома.

Хотелось бы остановиться на механизме материнского наследования генов путем приведения конкретного примера. Для того чтобы окончательно и бесповоротно понять механизм неменделевского (цитоплазматического) наследования митохондриальных генов, рассмотрим, что происходит с такими генами, когда две гаплоидные клетки сливаются, образуя диплоидную зиготу. В случае когда одна дрожжевая клетка несет мутацию, определяющую резистентность митохондриального белкового синтеза к хлорамфениколу, а другая - клетка дикого типа - чувствительна к этому антибиотику: мутантные гены легко выявить, выращивая дрожжи на среде с глицеролом, использовать который способны только клетки с интактными митохондриями; поэтому в присутствии хлорамфеникола на такой среде смогут расти только клетки, несущие мутантный ген. Наша диплоидная зигота вначале будет иметь митохондрии как мутантного, так и дикого типа. От зиготы в результате митоза отпочкуется диплоидная дочерняя клетка, которая будет содержать лишь небольшое число митохондрий. После нескольких митотических циклов в конце концов какая-то из новых клеток получит все митохондрии либо мутантного, либо дикого типа. Поэтому все потомство такой клетки будет иметь генетически идентичные митохондрии. Такой случайный процесс, в результате которого образуется диплоидное потомство содержащее митохондрии только одного типа, называют митотическо й се грегацие й . Когда диплоидная клетка с одним лишь типом митохондрий претерпевает мейоз, все четыре дочерние гаплоидные клетки получают одинаковые митохондриальные гены. Этот тип наследования называют неменде лев ским или цитоплазматическим в отличие от менделевского наследования ядерных генов. Передача генов по цитоплазматическому типу означает, что изучаемые гены находятся в митохондриях.

Изучение геномов митохондрий, их эволюции, идущей по специфическим законам популяционной генетики, взаимоотношений между ядерными и мито-хондриальными генетическими системами, необходимо для понимания слож-ной иерархической организации эвкариотической клетки и организма в целом.

С определенными мутациями в митохондриальной ДНК или в ядерных генах, контролирующих работу митохондрий, связывают некоторые наслед-ственные болезни и старение человека. Накапливаются данные об участии де-фектов мтДНК в канцерогенезе. Следовательно, митохондрии могут быть ми-шенью химиотерапии рака. Имеются факты о тесном взаимодействии ядерного и митохондриального геномов в развитии ряда патологий человека. Множес-твенные делеции мтДНК обнаружены у больных с тяжелой мышечной слабос-тью, атаксией, глухотой, умственной отсталостью, наследующихся по аутосомно-доминантному типу. Установлен половой диморфизм в клинических проявлениях ишемической болезни сердца, что скорее всего обусловлено мате-ринским эффектом - цитоплазматической наследственностью. Развитие ген-ной терапии внушает надежду на исправление дефектов в геномах митохон-дрий в обозримом будущем.

Как известно, для того чтобы проверить функцию одного из компонентов многокомпонентной системы, необходимой становится ликвидация даного компонента с последующим анализом произошедших изменений. Так как темой даного реферата является указание роли материнского генома для развития потомка, логично было бы узнать о последствиях нарушений в составе митохондриального генома вызванных различными факторами. Инструментом для изучения вышеуказанной роли оказался мутационный процесс, а интересующими нас последствиями его действия стали т. н. митохондриальные болезни.

Митохондриальные болезни представляют собой пример цитоплазмати-ческой наследственности у человека, а точнее «органелльной наследствен-ности». Это уточнение следует сделать, т.к. теперь доказано существование, по крайней мере, у некоторых организмов, цитоплазматических наследственных детерминант , не связанных с клеточными органеллами, - цитогенов(-Вечтомов, 1996).

Митохондриальные болезни - гетерогенная группа заболеваний, обусловленных генетическими, структурными, биохимическими дефектами митохондрий и нарушением тканевого дыхания. Для постановки диагноза митохондриального заболевания важен комплексный генеалогический, клинический, биохимический, морфологический и генетический анализ. Основным биохимическим признаком митохондриальной патологии является развитие лактат-ацидоза, обычно выявляется гиперлактатацидемия в сочетании с гиперпируватацидемией. Число различных вариантов достигло 120 форм. Отмечается стабильное повышение концентрации молочной и пировиноградной кислот в цереброспинальной жидкости.

Митохондриальные болезни (МБ) представляют собой существенную про-блему для современной медицины. По способам наследственной передачи среди МБ выделяют заболевания, наследуемые моногенно по менделевскому типу, при которых в связи с мутацией ядерных генов либо нарушаются структура и функционирование митохондриальных белков, либо изменяется экспрессия митохондриальной ДНК, а также болезни, вызываемые мутациями митохондри-альных генов, которые в основном передаются потомству по материнской линии.

Данные морфологических исследований, свидетельствующие о грубой патологии митохондрий: анормальная пролиферация митохондрий, полимор-физм митохондрий с нарушением формы и размеров, дезорганизация крист, скопления аномальных митохондрий под сарколеммой, паракристаллические включения в митохондрии, наличие межфибриллярных вакуолей

Формы митохондриальных заболеваний

1 . Митохондриальные болезни, вызванные мутациями митохондриальной ДНК

1.1.Болезни, обусловленные делециями митохондриальной ДНК

1.1.1.Синдром Кернса-Сейра

Заболевание проявляется в возрасте 4-18 лет, прогрессирующая наружная офтальмоплегия, пигментный ретинит, атаксия, интенционный тремор, атриовентрикулярная блокада сердца, повышение уровня белка в цереброспи-нальной жидкости более 1 г\л, "рваные" красные волокна в биоптатах скелет-ных мышц

1.1.2.Синдром Пирсона

Дебют заболевания с рождения или в первые месяцы жизни, иногда возможно развитие энцефаломиопатий, атаксии, деменции, прогрессирующей наружной офтальмоплегии, гипопластическая анемия , нарушение экзокринной функции поджелудочной железы, прогрессирующее течение

2 .Болезни, обусловленные точковыми мутациями митохондриальной ДНК

Материнский тип наследования, острое или подострое снижение остроты зре-ния на один или оба глаза, сочетание с неврологическими и костно-суставными нарушениями, микроангиопатия сетчатки, прогрессирующее течение с возмо-жностью ремиссии или восстановления остроты зрения, дебют заболевания в возрасте 20-30 лет

2.2.Синдром NAPR (невропатия, атаксия, пигментный ретинит)

Материнский тип наследования, сочетание нейропатии, атаксии и пигментного ретинита, задержка психомоторного развития, деменция, наличие "рваных" красных волокон в биоптатах мышечной ткани

2.3.Синдром MERRF (миоклонус-эпилепсия, "рваные" красные волокна)

Материнский тип наследования, дебют заболевания в возрасте 3-65 лет, мио-клоническая эпилепсия, атаксия, деменция в сочетании с нейросенсорной глу-хотой, атрофией зрительных нервов и нарушениями глубокой чувствительно-сти, лактат-ацидоз, при проведении ЭЭГ обследования выявляются генерализо-ванные эпилептические комплексы, "рваные" красные волокна в биоптатах скелетных мышц, прогрессирующее течение

2.4.Синдром MELAS (митохондриальная энцефаломиопатия, лактат-ацидоз, инсультоподобные эпизоды)

Материнский тип наследования, дебют заболевания в возрасте до 40 лет, непе-реносимость физических нагрузок, мигренеподобные головные боли с тошно-той и рвотой, инсультоподобные эпизоды, судороги, лактат-ацидоз, "рваные" красные волокна в биоптатах мышц, прогрессирующее течение.

3 .Патология, связанная с дефектами межгеномной коммуникации

3.1.Синдромы множественных делеций митохондриальной ДНК

Блефароптоз, наружная офтальмоплегия, мышечная слабость, нейросенсорная глухота, атрофия зрительных нервов, прогрессирующее течение, "рваные" крас-ные волокна в биоптатах скелетных мышц, снижение активности ферментов дыхательной цепи.

3.2.Синдром делеции митохондриальной ДНК

Аутосомно-рецессивный тип наследования

Клинические формы:

3.2.1.Фатальная инфантильная

а) тяжелая печеночная недостаточность б)гепатопатия в)мышечная гипотония

Дебют в периоде новорожденности

3.2.2.Врожденная миопатия

Выраженная мышечная слабость, генерализованная гипотония, кардиомиопа-тия и судороги, поражение почек, глюкозурия, аминоацидопатия, фосфатурия

3.2.3.Инфантильная миопатия

возникает в первые 2 года жизни, прогрессирующая мышечная слабость, атро-фия проксимальных групп мышц и утрата сухожильных рефлексов, течение быстро прогрессирующее, летальный исход в первые 3 года жизни.

4 .Митохондриальные болезни, обусловленные мутациями ядерной ДНК

4.1.Заболевания, связанные с дефектами дыхательной цепи

4.1.1.Дефицит комлекса 1 (NADH:CoQ-редуктаза)

Начало заболевания до 15 лет, синдром миопатии, задержка психомоторного развития, нарушение сердечно-сосудистой системы, судороги, резистентные к терапии, множественные неврологические нарушения, прогрессирующее тече-ние

4.1.2.Дефицит комплекса 2 (сукцинат-CoQ-редуктаза)

Характеризуется синдромом энцефаломиопатии, прогрессирующие течение, су-дороги, возможно развитие птоза

4.1.3.Дефицит комплекса 3 (CoQ-цитохром С-оксидоредуктаза)

Мультисистемные нарушения, поражение различных органов и систем, с вовле-чением центральной и периферической нервной системы, эндокринной систе-мы, почек, прогрессирующее течение

4.1.4.Дефицит комплекса (цитохром С-оксидаза)

4.1.4.1.Фатальный инфантильный врожденный лактат-ацидоз

Митохондриальная миопатия с почечной недостаточностью или кардиомиопа-тия, дебют в неонатальном возрасте, выраженные дыхательные нарушения, диффузная мышечная гипотония, течение прогрессирующее, летальный исход на первом году жизни.

4.1.4.2.Доброкачественная инфантильная мышечная слабость

Атрофии, при адекватном и своевременном лечении возможна быстрая стаби-лизация процесса и выздоровление к 1-3 годам жизни

5 .Синдром Менкеса (трихополиодистрофия)

Резкая задержка психомоторного развития, отставание в росте, нарушение рос-та и дистрофические изменения волос,

6 . Митохондриальные энцефаломиопатии

6.1.Синдром Лея (подострая невротизирующая энцефаломиелопатия)

Проявляется после 6 месяцев жизни, мышечная гипотония, атаксия, нистагм, пирамидные симптомы, офтальмоплегия, атрофия зрительных нервов, часто от-мечается присоединение кардиомиопатии и легкого метаболического ацидоза

6.2.Синдром Альперса (прогрессирующая склерозирующая полидистрофия)

Дегенерация серого вещества мозга в сочетании с циррозом печени, дефицит комплекса 5 (АТФ-синтетаза), задержка психомоторного развития, атаксия, деменция, мышечная слабость, течение заболевания прогрессирующее, небла-гоприятный прогноз

6.3.Дефицит Коэнзима-Q

Метаболические кризы, мышечная слабость и утомляемость, офтальмоплегия, глухота, снижение зрения, инсультоподобные эпизоды, атаксия, миоклонус-эпилепсия, поражение почек: глюкозурия, аминоацидопатия, фосфатурия, эндо-кринные нарушения, прогрессирующее течение, снижение активности фермен-тов дыхательной цепи

7 .Заболевания, связанные с нарушением метаболизма молочной и пировиноградной кислот

7.1.Дефицит пируваткарбоксилазы Аутосомно-рецессивный тип наследования, дебют заболевания в неоната-льном периоде, симптомокомплекс "вялого ребенка", судороги, резистентные к терапии, высокие концентрации кетоновых тел в крови, гипераммониемия, ги-перлизинемия, снижение активности пируваткарбоксилазы в скелетных мышцах

7.2.Дефицит пируватдегидрогеназы

Проявление в неонатальном периоде, черепно-лицевая дизморфия, судороги, резистентные к терапии, нарушение дыхания и сосания, симптомокомплекс "вя-лого ребенка", дисгинезии мозга, выраженный ацидоз с высоким содержанием лактата и пирувата

7.3.Снижение активности пируватдегидрогеназы

Проявление на первом году жизни, микроцефалия, задержка психомоторного развития, атаксия, мышечная дистония, хореоатетоз, лактат-ацидоз с высоким содержанием пирувата

7.4.Дефицит дигидролипоилтрансацетилазы

Аутосомно-рецессивный тип наследования, дебют заболевания в неонатальном периоде, микроцефалия, задержка психомоторного развития, мышечная гипотония с последующим повышением мышечного тонуса, атрофия дисков зрительных нервов, лактат-ацидоз, снижение активности дигидролипоилтранс-ацетилазы

7.5.Дефицит дигидролипоилдегидрогеназы

Аутосомно-рецессивный тип наследования, дебют заболевания на первом году жизни, симптомокомплекс "вялого ребенка", дисметаболические кризы со рво-той и диареей, задержка психомоторного развития, атрофия дисков зрительных нервов, лактат-ацидоз, повышение содержания в сыворотке крови аланина, α-кетоглутарата, α-кетокислот с разветвленной цепью, снижение активности ди-гидролипоилдегидрогеназы

8 .Заболевания, обусловленные дефектами бета-окисления жирных кислот

8.1.Недостаточность Ацетил-CoA-дегидрогеназы с длинной углеродной цепью

Аутосомно-рецессивный тип наследования, дебют заболевания в первые месяцы жизни, метаболические кризы со рвотой и диареей, симптомокомплекс "вялого ребенка", гипогликемия, дикарбоксиловая ацидурия, снижение актив-ности ацетил-CoA-дегидрогеназы жирных кислот с длинной углеродной цепью

8.2.Недостаточность Ацетил-CoA-дегидрогеназы со средней углеродной цепью

Аутосомно-рецессивный тип наследования, дебют заболевания в неонатальном периоде или первые месяцы жизни, метаболические кризы со рвотой и диареей,

мышечная слабость и гипотония, часто развивается синдром внезапной смерти, гипогликемия, дикарбоксиловая ацидурия, снижение активности ацетил-CoA-дегидрогеназы жирных кислот со средней углеродной цепью

8.3. Недостаточность Ацетил-CoA-дегидрогеназы жирных кислот с короткой углеродной цепью

Аутосомно-рецессивный тип наследования, различный возраст дебюта заболевания, снижение толерантности к физическим нагрузкам, метаболичес-кие кризы со рвотой и диареей, мышечная слабость и гипотония, увеличение экскреции с мочой метилсукциновой кислоты, ацетил-CoA-дегидрогеназы жирных кислот с короткой углеродной цепью

8.4.Множественная недостаточность Ацетил-CoA-дегидрогеназ жирных кислот

Неонатальная форма : черепно-лицевая дизморфия, дисгинезии мозга, тяжелая гипогликемия и ацидоз, злокачественное течение, снижение активности всех ацетил-СоА-дегидрогеназ жирных кислот,

Инфантильная форма: симптомокосплекс "вялого ребенка", кардиомиопатия, метаболические кризы, гипогликемия и ацидоз

8.5.Снижение активности всех ацетил-СоА-дегидрогеназ жирных кислот

Форма с поздним дебютом: периодические эпизоды мышечной слабости, мета-болические кризы, гипогликемия и ацидоз менее выражены, интеллект сохра-нен,

9 .Ферментопатии цикла Кребса

9.1.Дефицит фумаразы

Аутосомно-рецессивный тип наследования, дебют заболевания в неонатальном периоде или периоде новорожденности, микроцефалия, генерализованная мы-шечная слабость и гипотония, эпизоды летаргии, быстро прогрессирующая эн-цефалопатия, неблагоприятный прогноз

9.2.Дефицит сукцинатдегидрогеназы

Редкое заболевание, характеризующееся прогрессирующей энцефаломиопатией

9.3.Дефицит альфа-кетоглутаратдегидрогеназы

Аутосомно-рецессивный тип наследования, неонатальный дебют заболевания, микроцефалия, симптомокомплекс "вялого ребенка", эпизоды летаргии, лактат-ацидоз, быстро прогрессирующее течение, снижение содержания ферментов цикла Кребса в тканях

9.4.Синдромы дефицита карнитина и ферментов его метаболизма

Дефицит карнитин-пальмитоилтрансферразы-1, аутосомно-рецессивный тип наследования, ранний дебют заболевания, эпизоды не кетонемической гипогли-кемической комы, гепатомегалия, гипертриглицеридемия и умеренная гиперам-мониемия, снижение активности карнитин-пальмитоилтрансферразы-1 в фибробластах и клетках печени

9.5.Дефицит карнитин-ацилкарнитин-транслоказы

Ранний дебют заболевания, сердечно-сосудистые и дыхательные нарушения, симптомокомплекс "вялого ребенка", эпизоды летаргии и комы, повышение концентрации эфиров карнитина и длинной углеродной цепью на фоне сниже-ния свободного карнитина в сыворотке крови, снижение активности карнитин-ацилкарнитин-транслоказы

9.6.Дефицит карнитин-пальмитоилтрансферразы-2

Аутосомно-рецессивный тип наследования, мышечная слабость, миалгии, миоглобинурия, снижение активности карнитин-пальмитоилтрансферразы-2 в скелетных мышцах

Аутосомно-рецессивный тип наследования, миопатический симптомокомплекс, эпизоды вялости и летаргии, кардиомиопатия, эпизоды гипогликемии, снижение уровня карнитина в сыворотке крови и увеличение его экскреции с мочой.

Проанализировав такой ‘страшный’ список патологий, связанных с теми или другими изменениями функционирования митохондриального(и не только) генома возникают определенные вопросы. Что же собой представляют продукты митохондриальных генов и в каких именно супермега-жизненноважных клеточных процессах они принимают участие?

Как оказалось, некоторые из вышеперечисленных патологий могут возни-кать при нарушениях синтеза 7 субъединиц НАДН-дегидрогеназного комплек-са, 2 субъединиц АТФ-синтетазы, 3 субъединиц цитохром-с-оксидазы и 1 субъединицы убихинол-цитохром-с-редуктазы(цитохром b), которые и являют-ся генными продуктами митохондрий. Исходя из этого можно сделать вывод о существовании ключевой роли данных белков в процессах клеточного дыхания, окисления жирных кислот и синтеза АТФ, переноса электронов в электронтран-спортной системе внутренней мт мембраны, функционирования антиоксидант-ной системы и т. д.

Судя по последним данным о механизмах апоптоза, многие ученые пришли к выводу о наличии центра контроля апоптоза именно...

Роль митохондриальных белков также была показана при применении антибиотиков, блокирующих мт синтез. Если клетки человека в культуре ткани обработать антибиотиком, например тетрациклином или хлорамфениколом, то после одного-двух делений их рост прекратится. Это связано с ингибированием митохондриального белкового синтеза, приводящим к появлению дефектных митохондрий и как следствие к недостаточному образованию АТР. Почему же тогда антибиотики можно использовать при лечении бактериальных инфекций? Есть несколько ответов на этот вопрос:

1. Некоторые антибиотики (такие, как эритромицин) не проходят через внутрен-нюю мембрану митохондрий млекопитающих.

2. Большинство клеток нашего тела не делятся или делятся очень медленно, поэтому столь же медленно происходит и замена существующих митохондрий новыми (во многих тканях половина митохондрий заменяется примерно за пять дней или еще дольше). Таким образом, количество нормальных митохондрий снизится до критического уровня только в том случае, если блокада митохондриального белкового синтеза будет поддерживаться на протяжении многих дней.

3. Определенные условия внутри ткани препятствуют проникновению некоторых препаратов в митохондрии наиболее чувствительных клеток. Например, высокая концентрация Са2+ в костном мозге приводит к образованию Са2+-тетрациклинового комплекса, который не может проникнуть в быстро делящиеся (и потому наиболее уязвимые) предшественники клеток крови.

Эти факторы дают возможность использовать некоторые препараты, ингиби-рующие митохондриальный синтез белка, в качестве антибиотиков при лечении высших животных. Только два таких препарата оказывают побочное действие: длительное лечение большими дозами хлорамфеникола может привести к нарушению кроветворной функции костного мозга (подавить образование эритроцитов и лейкоцитов), а длительное применение тетрациклина - к поврежде-нию кишечного эпителия. Но в обоих случаях еще не вполне ясно, вызываются ли эти побочные эффекты блокадой биогенеза митохондрий или какими-то иными причинами.

Вывод

Структурно-функциональные особенности мт генома состоят в следу-ющем. Во-первых, установлено, что мтДНК передается от матери всем ее

потомкам и от ее дочерей всем последующим поколениям, но сыновья не передают свою ДНК (материнское наследование). Материнский характер

наследования мтДНК, вероятно, связан с двумя обстоятельствами: либо доля отцовских мтДНК так мала (по отцовской линии может передаваться не

более одной молекулы ДНК на 25 тыс. материнских мтДНК), что они не могут быть выявлены существующими методами, либо после оплодотворения блоки-руется репликация отцовских митохондрий. Во-вторых, отсутствие комбинати-вной изменчивости - мтДНК принадлежит только одному из родителей, сле-довательно рекомбинационные события, характерные для ядерной ДНК в мейо-зе, отсутствуют, а нуклеотидная последовательность меняется из поколения в поколение только за счет мутаций. В-третьих, мтДНК не имеет интронов

(большая вероятность, что случайная мутация поразит кодирующий район ДНК), защитных гистонов и эффективной ДНК-репарационной системы -все это определяет в 10 раз более высокую скорость мутирования, чем в ядерной ДНК. В-четвертых, внутри одной клетки могут сосуществовать одновременно нормальные и мутантные мтДНК -явление гетероплазмии (присутствие толь-ко нормальных или только мутантных мтДНК называется гомоплазмией). Наконец, в мтДНК транскрибируются и транслируются обе цепи, а по ряду ха-рактеристик генетический код мтДНК отличается от универсального (UGA кодирует триптофан, AUA кодирует метионин, AGA и AGG являются стоп-

кодонами).

Эти свойства и вышеуказанные функции мт-генома сделали иссле-дование изменчивости нуклеотидной последовательности мтДНК неоценимым инструментом для врачей, судебных медиков, биологов-эволюционистов,

представителей исторической науки в решении своих специфических задач.

Начиная с 1988 г., когда было открыто, что мутации генов мтДНК лежат в основе митохондриальных миопатий (J. Y. Holt et al., 1988) и наследственной оптической нейропатии Лебера (D. C. Wallace, 1988), дальнейшее систематичес-кое выявление мутаций мт-генома человека привело к формированию концеп-ции митохондриальных болезней (МБ). В настоящее время патологические му-тации мтДНК открыты в каждом типе митохондриальных генов.

Список литературы

1. Скулачев, митохондрии и кислород, Сорос. образоват. журн.

2. Основы биохимии: В трех томах, М.: Мир, .

3. Nicholes D. G. Bioenergetics, An Introd. to the Chemiosm. Th., Acad. Press, 1982.

4. Stryer L. Biochemistry, 2nd ed. San Fransisco, Freeman, 1981.

5. Скулачев биологических мембран. М., 1989.

6. , Ченцов ретикулум: Строение и некоторые функции // Итоги науки. Общие проблемы биологии. 1989

7. Ченцов цитология. М.: Изд-во МГУ, 1995

8. , Сфера компетенции митохон-дриального генома // Вестн. РАМН, 2001. ‹ 10. С. 31-43.

9. Holt I. J, Harding A. E., Morgan -Hughes I. A. Deletion of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 1988, 331:717-719.

10. и др. Геном человека и гены предрасположенности. СПб., 2000

11. , Митохондриальный геном. Новосибирск, 1990.

12. // Сорос. образоват. журн. 1999. №10. С.11-17.

13. Роль симбиоза в эволюции клетки. М., 1983.

14. // Сорос. образоват. журн. 1998. №8. С.2-7.

15. // Сорос. образоват. журн. 2000. №1. С.32-36.

Киевский Национальный Университет им. Тараса Шевченка

Биологический факультет

Реферат

на тему:

“Роль материнского генома в развитии потомка”

с туд е нта IV курса

кафедры биохимии

Фролова Артема

Киев 2004

План :

Вступление...............................................................................1

Симбиотическая теория происхождения митохондрий......2

Роль клеточного ядра в биогенезе митохондрий...................................5

Транспортные системы митохондрий.....................................................7

Размеры и форма митохондриальных геномов..................10

Функционирование митохондриального генома...............14

Значение наличия собственной генетической системы для митохондрий..............................................................................19

Цитоплазматическая наследственность..............................20