» » Законы отражения света. Отражение света. Полное отражение света Доказать что угол падения равен углу отражения

Законы отражения света. Отражение света. Полное отражение света Доказать что угол падения равен углу отражения

Впервые закон отражения упоминается в «Катоптрике» Евклида , датируемой примерно 300 до н. э.

Законы отражения. Формулы Френеля

Закон отражения света - устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отраженный лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:

Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики . Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света , он ничего не утверждает об интенсивности отражённого света.

Механизм отражения

При попадании электромагнитной волны на проводящую поверхность возникает ток, электромагнитное поле которого стремится компенсировать это воздействие, что приводит к практически полному отражению света.

Виды отражения

Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальное О. с. отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности; 2) угол отражения равен углу падения j. Интенсивность отражённого света (характеризуемая отражения коэффициентом) зависит от j и поляризации падающего пучка лучей (см. Поляризация света), а также от соотношения преломления показателей n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды - диэлектрика) выражают формулы Френеля . Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

(n2 - n1)²/(n2 + n1)²

В очень важном частном случае нормального падения из воздуха или стекла на границу их раздела (nвозд " 1,0; nст = 1,5) он составляет " 4 %.

Характер поляризации отражённого света меняется с изменением j и различен для компонент падающего света, поляризованных параллельно (р-компонента) и перпендикулярно (s-компонента) плоскости падения. Под плоскостью поляризации при этом понимается, как обычно, плоскость колебаний электрического вектора световой волны. При углах j, равных так называемому углу Брюстера (см. Брюстера закон), отражённый свет становится полностью поляризованным перпендикулярно плоскости падения (р-составляющая падающего света полностью преломляется в отражающую среду; если эта среда сильно поглощает свет, то преломленная р-составляющая проходит в среде очень малый путь). Эту особенность зеркального О. с. используют в ряде поляризационных приборов. При j, больших угла Брюстера, коэффициент отражения от диэлектриков растет с увеличением j, стремясь в пределе к 1, независимо от поляризации падающего света. При зеркальном О. с., как явствует из формул Френеля, фаза отражённого света в общем случае скачкообразно изменяется. Если j = 0 (свет падает нормально к границе раздела), то при n2 > n1 фаза отражённой волны сдвигается на p, при n2 < n1 - остаётся неизменной. Сдвиг фазы при О. с. в случае j ¹ 0 может быть различен для р- и s-составляющих падающего света в зависимости от того, больше или меньше j угла Брюстера, а также от соотношения n2 и n1. О. с. от поверхности оптически менее плотной среды (n2 < n1) при sin j ³ n2 / n1 является полным внутренним отражением, при котором вся энергия падающего пучка лучей возвращается в 1-ю среду. Зеркальное О. с. от поверхностей сильно отражающих сред (например, металлов) описывается формулами, подобными формулам Френеля, с тем (правда, весьма существенным) изменением, что n2 становится комплексной величиной, мнимая часть которой характеризует поглощение падающего света.

Поглощение в отражающей среде приводит к отсутствию угла Брюстера и более высоким (в сравнении с диэлектриками) значениям коэффициента отражения - даже при нормальном падении он может превышать 90% (именно этим объясняется широкое применение гладких металлических и металлизированных поверхностей в зеркалах).Отличаются и поляризационные характеристики отражённых от поглощающей среды световых волн (вследствие иных сдвигов фаз р- и s-составляющих падающих волн). Характер поляризации отражённого света настолько чувствителен к параметрам отражающей среды, что на этом явлении основаны многочисленные оптические методы исследования металлов (см. Магнитооптика, Металлооптика).

Диффузное О. с. - его рассеивание неровной поверхностью 2-й среды по всем возможным направлениям. Пространственное распределение отражённого потока излучения и его интенсивность различны в разных конкретных случаях и определяются соотношением между l и размерами неровностей, распределением неровностей по поверхности, условиями освещения, свойствами отражающей среды. Предельный, строго не выполняющийся в природе случай пространственного распределения диффузно отражённого света описывается Ламберта законом. Диффузное О. с. наблюдается также от сред, внутренняя структура которых неоднородна, что приводит к рассеянию света в объёме среды и возвращению части его в 1-ю среду. Закономерности диффузного О. с. от таких сред определяются характером процессов однократного и многократного рассеяния света в них. И поглощение, и рассеяние света могут обнаруживать сильную зависимость от l. Результатом этого является изменение спектрального состава диффузно отражённого света, что (при освещении белым светом)визуально воспринимается как окраска тел.

Полное внутреннее отражение

При увеличении угла падения i , угол преломления тоже увеличивается, при этом интенсивность отраженного луча растет, а преломленного - падает (их сумма равна интенсивности падающего луча). При каком-то значении i = i k угол r = π / 2 , интенсивность преломленного луча станет равной нулю, весь свет отразится. При дальнейшем увеличении угла i > i k преломленного луча не будет, происходит полное отражение света.

Значение критического угла падения, при котором начинается полное отражение найдем, положим в законе преломления r = π / 2 , тогда sinr = 1 , значит:

sini k = n 2 / n 1

Диффузное рассеяние света

θ i = θ r .
Угол падения равен углу отражения

Принцип действия уголкового отражателя


Wikimedia Foundation . 2010 .

Смотреть что такое "Закон отражения света" в других словарях:

    закон отражения света - šviesos atspindžio dėsnis statusas T sritis fizika atitikmenys: angl. light reflexion law vok. Reflexionsgesetz des Lichtes, n rus. закон отражения света, m pranc. loi de réflexion de la lumière, f … Fizikos terminų žodynas

    ЗАКОНЫ ОТРАЖЕНИЯ СВЕТА - два закона, по которым происходит процесс частичного или полного возвращения световых лучей, достигающих границы раздела двух сред, в ту среду, из которой падающие лучи подходят к этой границе. Первый закон: падающий луч, отражённый луч и… … Большая политехническая энциклопедия

    закон Снеллиуса - закон синусов Закон, определяющий соотношение углов падения, отражения и преломления волн на границе раздела сред в зависимости от фазовых скоростей волн в этих средах. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего… … Справочник технического переводчика

    Механика сплошных сред … Википедия

    Иллюстрация поляризации отражённого света, падающего на границу раздела сред под углом Брюстера Закон Брюстера закон оптики, выражающий связь показателя преломления диэлектрика с таким углом п … Википедия

    Отражение Отражение моста в Центральном канале, г. Индианаполис Отражение в трёх сферах Отражение физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными оптическими … Википедия

    Изменение направления распространения оптического излучения (с в е т а) при его прохождении через границу раздела двух сред. На протяжённой плоской границе раздела однородных изотропных прозрачных (непоглощающих) сред с преломления показателями… … Физическая энциклопедия

    1. Характерные свойства луча света. 2. Свет не есть движение упругого твердого тела механики. 3. Электромагнитные явления как механические процессы в эфире. 4. Первая Максвеллова теория света и электричества. 5. Вторая Максвеллова теория. 6.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Датируемой примерно 300 до н. э.

Законы отражения. Формулы Френеля

Закон отражения света - устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отраженный лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:

Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики . Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света , он ничего не утверждает об интенсивности отражённого света.

Механизм отражения

При попадании электромагнитной волны на проводящую поверхность возникает ток, электромагнитное поле которого стремится компенсировать это воздействие, что приводит к практически полному отражению света.

Виды отражения

Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальное О. с. отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности; 2) угол отражения равен углу падения j. Интенсивность отражённого света (характеризуемая отражения коэффициентом) зависит от j и поляризации падающего пучка лучей (см. Поляризация света), а также от соотношения преломления показателей n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды - диэлектрика) выражают формулы Френеля . Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

(n2 - n1)²/(n2 + n1)²

В очень важном частном случае нормального падения из воздуха или стекла на границу их раздела (nвозд " 1,0; nст = 1,5) он составляет " 4 %.

Характер поляризации отражённого света меняется с изменением j и различен для компонент падающего света, поляризованных параллельно (р-компонента) и перпендикулярно (s-компонента) плоскости падения. Под плоскостью поляризации при этом понимается, как обычно, плоскость колебаний электрического вектора световой волны. При углах j, равных так называемому углу Брюстера (см. Брюстера закон), отражённый свет становится полностью поляризованным перпендикулярно плоскости падения (р-составляющая падающего света полностью преломляется в отражающую среду; если эта среда сильно поглощает свет, то преломленная р-составляющая проходит в среде очень малый путь). Эту особенность зеркального О. с. используют в ряде поляризационных приборов. При j, больших угла Брюстера, коэффициент отражения от диэлектриков растет с увеличением j, стремясь в пределе к 1, независимо от поляризации падающего света. При зеркальном О. с., как явствует из формул Френеля, фаза отражённого света в общем случае скачкообразно изменяется. Если j = 0 (свет падает нормально к границе раздела), то при n2 > n1 фаза отражённой волны сдвигается на p, при n2 < n1 - остаётся неизменной. Сдвиг фазы при О. с. в случае j ¹ 0 может быть различен для р- и s-составляющих падающего света в зависимости от того, больше или меньше j угла Брюстера, а также от соотношения n2 и n1. О. с. от поверхности оптически менее плотной среды (n2 < n1) при sin j ³ n2 / n1 является полным внутренним отражением, при котором вся энергия падающего пучка лучей возвращается в 1-ю среду. Зеркальное О. с. от поверхностей сильно отражающих сред (например, металлов) описывается формулами, подобными формулам Френеля, с тем (правда, весьма существенным) изменением, что n2 становится комплексной величиной, мнимая часть которой характеризует поглощение падающего света.

Поглощение в отражающей среде приводит к отсутствию угла Брюстера и более высоким (в сравнении с диэлектриками) значениям коэффициента отражения - даже при нормальном падении он может превышать 90% (именно этим объясняется широкое применение гладких металлических и металлизированных поверхностей в зеркалах).Отличаются и поляризационные характеристики отражённых от поглощающей среды световых волн (вследствие иных сдвигов фаз р- и s-составляющих падающих волн). Характер поляризации отражённого света настолько чувствителен к параметрам отражающей среды, что на этом явлении основаны многочисленные оптические методы исследования металлов (см. Магнитооптика, Металлооптика).

Диффузное О. с. - его рассеивание неровной поверхностью 2-й среды по всем возможным направлениям. Пространственное распределение отражённого потока излучения и его интенсивность различны в разных конкретных случаях и определяются соотношением между l и размерами неровностей, распределением неровностей по поверхности, условиями освещения, свойствами отражающей среды. Предельный, строго не выполняющийся в природе случай пространственного распределения диффузно отражённого света описывается Ламберта законом. Диффузное О. с. наблюдается также от сред, внутренняя структура которых неоднородна, что приводит к рассеянию света в объёме среды и возвращению части его в 1-ю среду. Закономерности диффузного О. с. от таких сред определяются характером процессов однократного и многократного рассеяния света в них. И поглощение, и рассеяние света могут обнаруживать сильную зависимость от l. Результатом этого является изменение спектрального состава диффузно отражённого света, что (при освещении белым светом)визуально воспринимается как окраска тел.

Полное внутреннее отражение

При увеличении угла падения i , угол преломления тоже увеличивается, при этом интенсивность отраженного луча растет, а преломленного - падает (их сумма равна интенсивности падающего луча). При каком-то значении i = i k угол r = π / 2 , интенсивность преломленного луча станет равной нулю, весь свет отразится. При дальнейшем увеличении угла i > i k преломленного луча не будет, происходит полное отражение света.

Значение критического угла падения, при котором начинается полное отражение найдем, положим в законе преломления r = π / 2 , тогда sinr = 1 , значит:

sini k = n 2 / n 1

Диффузное рассеяние света

θ i = θ r .
Угол падения равен углу отражения

Принцип действия уголкового отражателя


Wikimedia Foundation . 2010 .

Смотреть что такое "Отражение света" в других словарях:

    Явление, заключающееся в том, что при падении света (оптического излучения) из первой среды на границу раздела со второй средой вз ствие света с в вом приводит к появлению световой волны, распространяющейся от границы раздела обратно в первую… … Физическая энциклопедия

    Возвращение световой волны при ее падении на поверхность раздела двух сред с различными показателями преломления обратно в первую среду. Различают отражение света зеркальное (размеры l неровностей на поверхности раздела меньше длины световой… … Большой Энциклопедический словарь

    ОТРАЖЕНИЕ СВЕТА, возвращение части светового пучка, падающего на границу раздела двух сред, обратно в первую среду. Различают зеркальное отражение света (размеры L неровностей на поверхности раздела меньше длины световой волны l) и диффузное (L?… … Современная энциклопедия

    Отражение света - ОТРАЖЕНИЕ СВЕТА, возвращение части светового пучка, падающего на границу раздела двух сред, “обратно” в первую среду. Различают зеркальное отражение света (размеры L неровностей на поверхности раздела меньше длины световой волны l) и диффузное (L … Иллюстрированный энциклопедический словарь

    отражение света - Явление, состоящее в том, что свет, падающий на поверхность раздела двух сред с различными коэффициентами преломления, частично или полностью возвращается в среду, из которой он падает. [Сборник рекомендуемых терминов. Выпуск 79. Физическая… … Справочник технического переводчика

    Явление, заключающееся в том, что при падении света (оптического излучения (См. Оптическое излучение)) из одной среды на границу её раздела со 2 й средой взаимодействие света с веществом приводит к появлению световой волны,… … Большая советская энциклопедия

    Возвращение световой волны при её падении на поверхность раздела двух сред с различными показателями преломления «обратно» в первую среду. Различают отражения света зеркальное (размеры l неровностей на поверхности раздела меньше длины световой… … Энциклопедический словарь

    отражение света - šviesos atspindys statusas T sritis fizika atitikmenys: angl. light reflection vok. Reflexion des Lichtes, f rus. отражение света, n pranc. réflexion de la lumière, f … Fizikos terminų žodynas

    отражение света - ▲ отражение (от чего) свет отсвет. отсвечивать. альбедо. альбедометр. ↓ рефлектор. рефлектометр. металлооптика … Идеографический словарь русского языка

    Возвращение световой волны при её падении на границу раздела двух сред с разл. показателями преломления обратно в первую среду. Если неровности поверхности раздела малы по сравнению с длиной волны X падающего света, то наблюдается зеркальное О. с … Большой энциклопедический политехнический словарь

Книги

  • Полное внутреннее отражение света. Учебные исследования , Майер Валерий Вильгельмович , Книга содержит описания учебных экспериментальных исследований явления полного внутреннего отражения от границы оптически однородной и слоисто-неоднородной сред. Предложены простые физические… Категория: Учебники для школьников Серия: Библиотека учителя и школьника Издатель: ФИЗМАТЛИТ , Производитель:

Законы отражения и преломления света. Полное внутреннее отражение света

Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

На гладкую отражательную поверхность КМ (рис. 1.) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

Рис. 1 Построение Гюйгенса.

А 1 А и В 1 В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА 2 и ВВ 2 .

Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

Углы САВ = α и DBA = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ.

Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

Законы отражения справедливы при обратном направлении хода световых лучей. Вследствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь.

Это явление называется диффузное отражение или рассеянное отражение . Диффузное отражение света (рис. 2.) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.



Рис. 2. Диффузное отражение света.

Например, 85% белого света отражается от поверхности снега, 75% - от белой бумаги, 0,5% - от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 3.). Отражающая поверхность в этом случае называется зеркалом (или зеркальная поверхность ). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

Рис. 3. Зеркальное отражение света.

Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 4.). Такой пучок лучей называется гомоцентрическим . Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

Рис. 4. Изображение, возникающее с помощью плоского зеркала.

Изображение S’ называется действительным, если в точке S 1 пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S 1 называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 4 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO 1 .

Луч SO 1 падает на зеркало под углом α и отражается под углом γ (α = γ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S 1 , которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S 1 , хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S 1 расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

Луч SB, падающий на зеркало под углом 2 (рис. 5.), согласно закону отражения света отражается под углом 1 = 2.

Рис. 5. Отражение от плоского зеркала.

Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

Прямоугольные треугольники ΔSOB и ΔS 1 OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS 1 , то есть точка S 1 расположена симметрично точке S относительно зеркала.

Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 6.). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

Рис. 6. Изображение предмета в плоском зеркале.

В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым , если лучи отражаются от внутренней поверхности сферического сегмента.

Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим . Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым . Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим .

Преломление На границе раздела двух сред падающий световой поток делится на две части: одна часть отражается, другая – преломляется.
В. Снелл (Снеллиус) до X. Гюйгенса и И. Ньютона в 1621 г. экспериментально открыл закон преломления света, однако не получил формулу, а выразил его в виде таблиц, т.к. к этому времени в математике еще не были известны функции sin и cos.
Преломление света подчиняется закону: 1. Луч падающий и луч преломленный лежат в одной плоскости с перпендикуляром, восставленным в точке падения луча к поверхности раздела двух сред. 2. Отношение синуса угла падения к синусу угла преломле­ния для двух данных сред есть величина постоянная (для моно­хроматического света).
Причиной преломления является различие скоростей распространения волн в различных средах.
Величина, равная отношению скорости света в вакууме к скорости света в данной среде, называется абсолютным показателем преломления среды. Это табличная величина – характеристика данной среды.
Величина, равная отношению скорости света в одной среде к скорости света в другой, называется относительным показателем преломления второй среды относительно первой.
Доказательство закона преломления. Распространение падающих и преломленных лучей: ММ" - граница раздела двух сред. Лучи А 1 А и В 1 В - падающие лучи; α - угол падения;. АС – волновая поверхность в момент, когда луч А 1 А достигнет границы раздела сред. Воспользовавшись принципом Гюйгенса построим волновую поверхность в тот момент, когда луч В 1 Вдостигнет границы раздела сред. Построим преломленные лучи АА 2 и ВВ 2 . β - угол преломления. АВ – общая сторона треугольников АВС и АВD. Т.к. лучи и волновые поверхности взаимно перпендикулярны, то угол ABD= α и угол BAC=β. Тогда получим:
В призме или плоскопараллельной пластине преломление происходит на каждой грани в соответствие с законом преломления света. Не забудьте, что всегда существует отражение. Кроме того, реальный ход лучей зависит и от показателя преломления, и от преломляющего угла – угла при вершине призмы.)
Полное отражение Если свет падает из оптически более плотной среды в оптически менее плотную, то при определенном для каждой среды угле падения, преломленный луч исчезает. Наблюдается только преломление. Это явление называется полным внутренним отражением.
Угол падения, которому соответствует угол преломления 90°, называют предельным углом полного внутреннего отражения (a 0). Из закона преломления следует, что при переходе света из какой-либо среды в вакуум (или воздух)
Если мы пытаемся из-под воды взглянуть на то, что находится в воздухе, то при определенном значении угла, под которым мы смотрим, можно увидеть отраженное от поверхности воды дно. Это важно учитывать для того, чтобы не потерять ориентировку.
В ювелирном деле огранка камней подбирается так, чтобы на каждой грани наблюдалось полное отражение. Этим и объясняется "игра камней".
Полным внутренним отражением объясняется и явление миража.

Следует отметить, что изображение, которое мы видим по ту сторону зеркала, создано не самими лучами, а их мысленным продолжением. Такое изображение называется мнимым. Его глазом видно, но на экране его невозможно получить, так как оно создано не лучами, а их мысленным продолжением.

При отражении также соблюдается принцип наименьшего времени распространения света. Для того, чтобы попасть после отражения в глаз наблюдателя, свет должен прийти именно тот путь, который указывает ему закон отражения. Именно распространяясь по такому пути, свет на свой путь потратит наименьшее время из всех возможных вариантов.

3. Закон преломления света

Как нам уже известно, свет может распространяться не только в вакууме, но и в других прозрачных средах. В этом случае свет будет испытатьпреломление. При переходе из менее плотной среды в более плотную, луч света при преломлении прижимается к перпендикуляру, проведённому к точке падения, а при переходе из более плотной среды в менее плотную, он наоборот: отклоняется от перпендикуляра.

При этом имеются два закона преломления:

1. Падающий луч, преломлённый луч и перпендикуляр, проведённый к точке падения, лежат в одной плоскости.

2. Отношение синусов углов падения и преломления равно обратному отношению показателей преломления:

sin  n 2

sin  n 1

Представляет интерес прохождения луча света через трёхгранную призму. При этом, в любом случае наблюдается отклонение луча после прохождения через призму от первоначального направления:

У различных прозрачных тел показатель преломления различен. У газов он очень мало отличается от единицы. С повышением давления он возрастает, следовательно, показатель преломления газов зависит и от температуры. Вспомним, что если смотреть на отдалённые предметы сквозь горячий воздух, поднимающийся от костра, то видим, что всё, что вдали выглядит как колышащееся марево. У жидкостей показатель преломления зависит не только от самой жидкости, но и от концентрации растворённых в ней веществ. Ниже приводится небольшая таблица показателей преломления некоторых веществ.

4. Полное внутреннее отражение света.

Волоконная оптика

Следует отметить, что световой луч, распространяясь в пространстве, обладает свойством обратимости. Это значит, что по какому пути луч распространяется от источника в пространстве, по такому же пути он пойдёт обратно, если источник и точку наблюдения поменять местами.

Представим себе, что луч света распространяется из оптически более плотной среды в оптически менее плотную. Тогда, по закону преломления, он при преломлении должен выйти, отклонившись от перпендикуляра. Рассмотрим лучи, исходящие от точечного источника света, находящегося в оптически более плотной среде, например, в воде.

Из данного рисунка видно, что первый луч падает на поверхность раздела перпендикулярно. При этом луч от первоначального направления не отклоняется. Часто его энергии отражается от границы раздела и возвращается на источник. Остальная часть его энергии выходит наружу. Остальные лучи частично отражаются, частично выходят наружу. При увеличении угла падения растёт соответственно и угол преломления, что соответствует закону преломления. Но когда угол падения принимает такое значение, что, согласно закону преломления, угол выхода луча должен составить 90 градусов, то луч на поверхность вообще не выйдет: все 100% энергии луча отразятся от границы раздела. Все остальные лучи, падающие на поверхность раздела под углом, большим, чем этот, будут полностью отражены от поверхности раздела. Этот угол называется предельным углом , а явление называетсяполным внутренним отражением. То есть, поверхность раздела в данном случае выступает как идеальное зеркало. Значение предельного угла для границы с вакуумом или воздухом можно подсчитать по формуле:

Sin пр = 1/ n Здесьn – показатель преломления более плотной среды.

Явление полного внутреннего отражения широко используется в различных оптических приборах. В частности, используется в приборе для определения концентрации растворённых веществ в воде (рефрактометр). Там измеряется предельный угол полного внутреннего отражения, по которому определяется показатель преломления и потом по таблице определяют концентрацию растворённых веществ.

Особенно ярко проявляется явление полного внутреннего отражения в волоконной оптике. Ниже на рисунке изображено одно стекловолокно в разрезе:

Возьмём тонкое стеклянное волокно и в один из торцов запустим луч света. Поскольку волокно очень тонкое, то любой луч, вошедший в торец волокна, будет падать на его боковую поверхность под углом, значительно превышающий предельный угол и будет полностью отражён. Таким образом, вошедший луч будет многократно отражаться от боковой поверхности и выйдет из противоположного конца практически без потерь. Внешне это будет выглядеть так, как будто противоположный торец волокна ярко светится. К тому же совсем необязательно, чтобы стекловолокно было прямолинейным. Оно может изгибаться как угодно, причём, никакие изгибы не повлияют распространению света по волокну.

В связи с этим, учёным пришла идея: а что, если взять не одно волокно, а целый их пучок. Но при этом надо, чтобы все волокна в жгуте находились в строгом взаимном порядке и на обеих сторонах жгута торцы всех волокон находились в одной плоскости. И если при этом на один торец жгута с помощью линзы подать изображение, то каждое волокно в отдельности передаст на противоположный торец жгута одну маленькую частичку изображения. Все вместе волокна на противоположном торце жгута воспроизведут то же самое изображение, что было создано линзой. Причём, изображение будет в естественном свете. Таким образом, был создан прибор, названный позже фиброгастроскопом . Этим прибором можно осмотреть внутреннюю поверхность желудка, не производя оперативного вмешательства. Фиброгастроскоп вводят через пищевод в желудок и осматривают внутреннюю поверхность желудка. В принципе, данным прибором можно осмотреть не только желудок, но и другие органы изнутри. Данный прибор используется не только в медицине, но и в различных областях техники для осмотра недоступных областей. И при этом сам жгут может иметь всевозможные изгибы, которые при этом никак не влияют на качество изображения. Единственный недостаток данного прибора – это растровая структура изображения: то есть изображение состоит из отдельных точек. Для того, чтобы изображение было более чётким, нужно иметь ещё большее количество стекловолокон, причём они должны быть ещё более тонкими. А это значительно увеличивает стоимость прибора. Но с дальнейшим развитием технических возможностей данная проблема вскоре будет решена.

С помощью опытов законы отражения для светового излучения были найдены еще в III в. до н. э. древнегреческим ученым Евклидом. В современных условиях проверка этих законов делается с помощью оптической шайбы (рис. 29.2). Она состоит из источника света А, который можно перемещать вокруг диска, разделенного на градусы. Направляя свет на отражающую поверхность 3, измеряют углы .

Законы отражения света совпадают с законами отражения волн от препятствий (§ 24.19).

1. Луч падающий и луч отраокенный лежат одной плоскости в перпендикуляром к отражающей поверхносичи, восставленным в точке падения луча.

2. Угол отражения луча равен углу его падения:

С помощью оптической шайбы можно показать, что падающий и отраженный лучи обратимы, т. е. если падающий луч направить по пути отраженного луча, то отраженный луч пойдет по пути падающего луча.

В § 24.19 были установлены законы отражения для сферического фронта волны. Покажем теперь, что они справедливы и для плоского фронта волны, т. е. для случая падения на плоскую поверхность параллельных лучей.

Пусть на гладкую поверхность (рис. 29.3) падает плоская волна, фронт которой в какой-либо момент времени занимает положение Через некоторое время он займет положение . В этот момент времени (мы примем его за нуль) от точки А начнет распространяться отраженная элементарная волна. Пока фронт волны за время из точки С переместится в точку В, волна из точки

А распространится по полусфере на расстояние равное так как скорость распространения волн). Новым положением фронта волны после отражения лучей будет касательная к полусфере, проведенная из точки В, т. е. прямая Дальше этот фронт волны будет двигаться параллельно самому себе по направлению лучей АА или