» » Что такое температура? Единицы измерения температуры - градусы. Температура пара и газа. Определение температуры Что такое температура определение

Что такое температура? Единицы измерения температуры - градусы. Температура пара и газа. Определение температуры Что такое температура определение

Характеризующая тепловое состояние тел.

В окружающем нас мире происходят различные явления, связанные с нагреванием и охлаждением тел. Их называют тепловыми явлениями . Так, при нагревании холодная вода сначала стано-вится теплой, а затем горячей; вынутая из пламени металлическая деталь постепенно охлаждает-ся и т. д. Степень нагретости тела, или его тепловое состояние, мы обозначаем словами «теплый», «холодный», «горячий», Для количественной оценки этого состояния и служит температура .

Температура — один из макроскопических параметров системы. В физике, тела, состоящие из очень большого числа атомов или молекул , называют макроскопическими . Размеры макроскопических тел во много раз превышают размеры атомов. Все окружающие тела — от стола или газа в воздушном шарике до песчинки — макроскопические тела.

Величины, характеризующие состояние макроскопических тел без учета их молекулярного строения, называют макроскопическими параметрами . К ним относятся объем , давление , темпе-ратура , концентрация частиц, масса , плотность , намагниченность и т. д. Температура — один из важнейших макроскопических параметров системы (газа, в частности).

Температура — характеристика теплового равновесия системы.

Известно, что для определения температуры среды следует поместить в эту среду термометр и подождать до тех нор, пока температура термометра не перестанет изменяться, приняв значе-ние, равное температуре окружающей среды. Другими словами, необходимо некоторое время для установления между средой и термометром теплового равновесия.

Тепловым , или термодинамическим , равновесием называют такое состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными. Это означает, что не меняются объем и давление в системе, не происходят фазовые превращения, не меняется температура.

Однако микроскопические процессы при тепловом равновесии не прекращаются: скорости молекул меняются, они перемещаются, сталкиваются.

Любое макроскопическое тело или группа макроскопических тел — термодинамическая система — может находиться в различных состояниях теплового равновесия. В каждом из этих состояний температура имеет свое вполне определенное значение. Другие величины могут иметь разные (но постоянные) значения. Например, давление сжатого газа в баллоне будет отличаться от давления в помещении и при температурном равновесии всей системы тел в этом помещении.

Температура характеризует состояние теплового равновесия макроскопической системы: во всех частях системы, находящихся в состоянии теплового равновесия, температура имеет одно и то же значение (это единственный макроскопический параметр, обладающий таким свойством).

Если два тела имеют одинаковую температуру, между ними не происходит теплообмен, если разную — теплообмен происходит, причем тепло передается от более нагретого тела к менее нагретому до полного выравнивания температур.

Измерение температуры основано на зависимости какой-либо физической величины (напри-мер, объема) от температуры. Эта зависимость и используется в температурной шкале термомет-ра — прибора, служащего для измерения температуры.

Действие термометра основано на тепловом расширении вещества. При нагревании столбик используемого в термометре вещества (например, ртути или спирта) увеличивается, при охлаждении — уменьшается. Использующиеся в быту термометры позволяют выразить температуру вещества в градусах Цельсия (°С) .

А. Цельсий (1701-1744) — шведский ученый, предложивший использовать стоградусную шкалу температур. В температурной шкале Цельсия за нуль (с середины XVIII в.) принимается температура тающего льда, а за 100 градусом — температура кипения воды при нормальном атмосферном давлении.

Поскольку различные жидкости расширяются с повышением температуры по-разному, то температурные шкалы в термометрах с разными жидкостями различны.

Поэтому в физике используют идеальную газовую шкалу температур , основанную на зависимости объема (при постоянном давлении) или давления (при постоянном объеме) газа от тем-пературы.

Существует несколько различных единиц измерения температуры.

Наиболее известными являются следующие:

Градус Цельсия - применяется в Международной системе единиц (СИ) наряду с кельвином.

Градус Цельсия назван в честь шведского учёного Андерса Цельсия, предложившего в 1742 году новую шкалу для измерения температуры.

Первоначальное определение градуса Цельсия зависело от определения стандартного атмосферного давления, потому что и температура кипения воды и температура таяния льда зависят от давления. Это не очень удобно для стандартизации единицы измерения. Поэтому после принятия кельвина K, в качестве основной единицы измерения температуры, определение градуса Цельсия было пересмотрено.

Согласно современному определению, градус Цельсия равен одному кельвину K, а ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15:

В 1665 году голландский физик Христиан Гюйгенс вместе с английским физиком Робертом Гуком впервые предложили использовать в качестве отсчетных точек температурной шкалы точки таяния льда и кипения воды.

В 1742 году шведский астроном, геолог и метеоролог Андерс Цельсий (1701-1744) на основе этой идеи разработал новую температурную шкалу. Первоначально в ней 0° (нулём) была точка кипения воды, а 100° - температура замерзания воды (точка плавления льда). Позже, уже после смерти Цельсия, его современники и соотечественники ботаник Карл Линней и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру таяния льда, а за 100° - кипения воды). В таком виде шкала и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим - шкалу перевернул преемник Цельсия Мортен Штремер, и в XVIII веке такой термометр был широко распространён под названием «шведский термометр», а в самой Швеции - под именем Штремера, но известнейший шведский химик Йёнс Якоб Берце́лиус в своем труде «Руководство по химии» назвал шкалу «Цельсиевой» и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Градус Фаренгейта.

Назван в честь немецкого учёного Габриеля Фаренгейта, предложившего в 1724 году шкалу для измерения температуры.

На шкале Фаренгейта точка таяния льда равна +32 °F, а точка кипения воды +212 °F (при нормальном атмосферном давлении). При этом один градус Фаренгейта равен 1/180 разности этих температур. Диапазон 0…+100 °F по шкале Фаренгейта примерно соответствует диапазону −18…+38 °C по шкале Цельсия. Ноль на этой шкале определяется по температуре замерзания смеси воды, соли и нашатыря (1:1:1), а за 96 °F принята нормальная температура человеческого тела.

Кельвин (до 1968 года градус Кельвина) - единица термодинамической температуры в Международной системе единиц (СИ), одна из семи основных единиц СИ. Предложена в 1848 году. 1 кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Начало шкалы (0 К) совпадает с абсолютным нулём.

Пересчёт в градусы Цельсия: °С = K−273,15 (температура тройной точки воды - 0,01 °C).

Единица названа в честь английского физика Уильяма Томсона, которому было пожаловано звание лорд Кельвин Ларгский из Айршира. В свою очередь, это звание пошло от реки Кельвин (River Kelvin), протекающей через территорию университета в Глазго.

Кельвин

Градус Цельсия

Градус Фаренгейта

Абсолютный ноль

Температура кипения жидкого азота

Сублимация (переход из твёрдого состояния в газообразное) сухого льда

Точка пересечения шкал Цельсия и Фаренгейта

Температура плавления льда

Тройная точка воды

Нормальная температура человеческого тела

Температура кипения воды при давлении в 1 атмосферу (101,325 кПа)

Градус Реомюра - единица измерения температуры, в которой температура замерзания и кипения воды приняты за 0 и 80 градусов, соответственно. Предложен в 1730 году Р. А. Реомюром. Шкала Реомюра практически вышла из употребления.

Градус Рёмера - неиспользуемая ныне единица температуры.

Температурная шкала Рёмера была создана в 1701 году датским астрономом Оле Кристенсеном Рёмером. Она стала прообразом шкалы Фаренгейта, который посещал Рёмера в 1708 году.

За ноль градусов берётся температура замерзания солёной воды. Вторая реперная точка - температура человеческого тела (30 градусов по измерениям Рёмера, то есть 42 °C). Тогда температура замерзания пресной воды получается как 7,5 градусов (1/8 шкалы), а температура кипения воды - 60 градусов. Таким образом, шкала Рёмера - 60-градусная. Такой выбор, по-видимому, объясняется тем, что Рёмер прежде всего астроном, а число 60 было краеугольным камнем астрономии со времён Вавилона.

Градус Ранкина – единица температуры в абсолютной температурной шкале, названа по имени шотландского физика Уильяма Ранкина (1820-1872). Используется в англоязычных странах для инженерных термодинамических расчётов.

Шкала Ранкина начинается при температуре абсолютного нуля, точка замерзания воды соответствует 491,67°Ra, точка кипения воды 671,67°Ra. Число градусов между точками замерзания и кипения воды по шкале Фаренгейта и Ранкина одинаково и равно 180.

Соотношение между кельвином и градусом Ранкина: 1 K = 1,8 °Ra, градусы Фаренгейта переводятся в градусы Ранкина по формуле °Ra = °F + 459,67.

Градус Делиля - ныне неупотребляемая единица измерения температуры. Была изобретена французским астрономом Жозефом Николя Делилем (1688-1768). Шкала Делиля схожа с температурной шкалой Реомюра. Использовалась в России до XVIII века.

Петр Первый пригласил французского астронома Жозефа Николя Делиля в Россию, учреждая Академию Наук. В 1732 году Делиль создал термометр, использующий ртуть в качестве рабочей жидкости. В качестве нуля была выбрана температура кипения воды. За один градус было принято такое изменение температуры, которое приводило к уменьшению объема ртути на одну стотысячную.

Таким образом, температура таяния льда составила 2400 градусов. Однако позже столь дробная шкала показалась избыточной, и уже зимой 1738 года коллега Делиля по петербургской академии, медик Йозиас Вайтбрехт (1702-1747), уменьшил число ступеней от температуры кипения до температуры замерзания воды до 150.

«Перевернутость» этой шкалы (как и изначального варианта шкалы Цельсия) по сравнению с принятыми в настоящее время обычно объясняют чисто техническими трудностями, связанными с градуировкой термометров.

Шкала Делиля получила достаточно широкое распространение в России, и его термометры использовались около 100 лет. Этой шкалой пользовались многие российские академики, в том числе Михаил Ломоносов, который, однако «перевернул» её, расположив ноль в точке замерзания, а 150 градусов - в точке кипения воды.

Градус Гука - историческая единица температуры. Шкала Гука считается самой первой температурной шкалой с фиксированным нулём.

Прообразом для созданной Гуком шкалы стал попавший к нему в 1661 термометр из Флоренции. В изданной через год «Микрографии» Гука встречается описание разработанной им шкалы. Гук определил один градус как изменение объёма спирта на 1/500, т. е. один градус Гука равен примерно 2,4 °C.

В 1663 году члены Королевского общества согласились использовать термометр Гука в качестве стандартного и сравнивать с ним показания других термометров. Голландский физик Христиан Гюйгенс в 1665 г. вместе с Гуком предложил использовать температуры таяния льда и кипения воды для создания шкалы температур. Это была первая шкала с фиксированным нулём и отрицательными значениями.

Градус Дальтона – историческая единица температуры. Он не имеет определённого значения (в единицах традиционных температурных шкал, таких как шкала Кельвина, Цельсия или Фаренгейта), поскольку шкала Дальтона - логарифмическая.

Шкала Дальтона была разработана Джоном Дальтоном для проведения измерений при высоких температурах, поскольку обычные термометры с равномерной шкалой давали ошибку из-за неравномерного расширения термометрической жидкости.

Нуль шкалы Дальтона соответствует нулю Цельсия. Отличительной чертой шкалы Дальтона является то, что в ней абсолютный нуль равен − ∞°Da, т. е. он является недостижимой величиной (что на самом деле так, согласно теореме Нернста).

Градус Ньютона - не используемая ныне единица температуры.

Температурная шкала Ньютона была разработана Исааком Ньютоном в 1701 году для проведения теплофизических исследований и стала, вероятно, прообразом шкалы Цельсия.

В качестве термометрической жидкости Ньютон использовал льняное масло. За ноль градусов Ньютон взял температуру замерзания пресной воды, а температуру человеческого тела он обозначил как 12 градусов. Таким образом, температура кипения воды стала равна 33 градусам.

Лейденский градус - историческая единица температуры, использовавшаяся в начале XX века для измерения криогенных температур ниже −183 °C.

Эта шкала происходит из Лейдена, где с 1897 года находилась лаборатория Камерлинг-Оннеса. В 1957 году Х. ван Дийк и М. Дюро ввели шкалу L55.

За ноль градусов бралась температура кипения стандартного жидкого водорода (−253 °C), состоящего на 75 % из ортоводорода и на 25 % из параводорода. Вторая реперная точка - температура кипения жидкого кислорода (−193 °C).

Планковская температура , названная в честь немецкого ученого-физика Макса Планка, единица температуры, обозначаемая T P , в Планковской системе единиц. Это одна из планковских единиц, которая представляет фундаментальный предел в квантовой механике. Современная физическая теория не способна описать что-либо более горячее из-за отсутствия в ней разработанной квантовой теории гравитации. Выше планковской температуры энергия частиц становится настолько большой, что гравитационные силы между ними становятся сравнимы с остальными фундаментальными взаимодействиями. Это температура Вселенной в первый момент (Планковское время) Большого взрыва в соответствии с текущими представлениями космологии.

ТЕМПЕРАТУРА И ЕЁ ИЗМЕРЕНИЕ.

ЭКСПЕРИМЕНТАЛЬНЫЕ ГАЗОВЫЕ ЗАКОНЫ.

1.Тепловое равновесие. Температура.

Температура – это физическая величина, характеризующая степень нагретости тела. Если два тела разной температуры привести в соприкосновение, то, как показывает опыт, более нагретое тело будет охлаждаться, а менее нагретое – нагреваться, т.е. происходит теплообмен – передача энергии от более нагретого тела к менее нагретому без совершения работы.

Энергия, передаваемая при теплообмене, называется количеством теплоты .

Через некоторое время после приведения тел в соприкосновение они приобретают одинаковую степень нагретости, т.е. приходят в состояние теплового равновесия .

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором теплообмен не происходит и все макропараметры тел остаются неизменными, если внешние условия не меняются.

При этом два параметра – объём и давление – могут быть различными для разных тел системы, а третий, температура, в случае теплового равновесия одинаков для всех тел системы. На этом основано определение температуры.

Физический параметр, одинаковый для всех тел системы, находящихся в состоянии теплового равновесия, называется температурой этой системы.

Например, система состоит из двух сосудов с газом. Приведём их в соприкосновение. Объём и давление газа в них могут быть различными, а температура в результате теплообмена станет одинаковой.

2.Измерение температуры.

Для измерения температуры используют физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо параметра.

Для создания термометра необходимо:

    Выбрать термометрическое вещество, параметры (характеристики) которого изменяются при изменении температуры (например, ртуть, спирт и т.д.);

    Выбрать термометрическую величину, т.е. величину, которая изменяется с изменением температуры (например, высота ртутного или спиртового столбика, величина электрического сопротивления и т.д.);

    Откалибровать термометр, т.е. создать шкалу, по которой будет производиться отсчёт температуры. Для этого термометрическое тело приводится в тепловой контакт с телами, температуры которых постоянны. Например, при построении шкалы Цельсия температура смеси воды и льда в состоянии плавления принимается за 0 0 С, а температура смеси водяного пара и воды в состоянии кипения при давлении 1 атм. – за 100 0 С. Отмечается положение столбика жидкости в обоих случаях, а затем расстояние между полученными метками делится на 100 делений.

При измерении температуры термометр приводят в тепловой контакт с телом, температура которого измеряется, и после того, как установится тепловое равновесие (показания термометра перестанут меняться), считывается показание термометра.

3.Экспериментальные газовые законы.

Параметры, описывающие состояние системы, взаимозависимы. Установить зависимость друг от друга сразу трёх параметров сложно, поэтому немного упростим задачу. Рассмотрим процессы, при которых

а) количество вещества (или масса) постоянно, т.е. ν=const (m=const);

б) значение одного из параметров фиксировано, т.е. постоянно либо давление, либо объём, либо температура.

Такие процессы называются изопроцессами .

1).Изотермический процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянной температуре.

Исследован Бойлем (1662 г.) и Мариоттом (1676 г.).

Упрощённая схема опытов такова. Рассмотрим сосуд с газом, закрытый подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа.

Опыт показал, что произведение давления на объём газа при постоянной температуре есть величина постоянная. Это значит

PV = const

Закон Бойля-Мариотта .

Объём V данного количества газа ν при постоянной температуре t 0 обратно пропорционален его давлению, т.е. .

Графики изотермических процессов.

График зависимости давления от объёма при постоянной температуре называется изотермой. Чем больше температура, тем выше на графике располагается изотерма.

2).Изобарный процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном давлении.

Исследован Гей-Люссаком (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на котором установлен грузик, уравновешивающий давление газа. Сосуд с газом нагревается.

Опыт показал, что при нагревании газа при постоянном давлении его объём изменяется по следующему закону: где V 0 – объём газа при температуре t 0 = 0 0 C; V – объём газа при температуре t 0 , α v – температурный коэффициент объёмного расширения,

Закон Гей-Люссака .

Объём данного количества газа при постоянном давлении линейно зависит от температуры.

Графики изобарных процессов.

График зависимости объёма газа от температуры при постоянном давлении называется изобарой.

Если экстраполировать (продолжить) изобары в область низких температур, то все они сойдутся в точке, соответствующей температуре t 0 = - 273 0 С.

3).Изохорный процесс , т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном объёме.

Исследован Шарлем (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа. Сосуд нагревается.

Опыт показал, что при нагревании газа при постоянном объёме его давление изменяется по следующему закону: где P 0 – объём газа при температуре t 0 = 0 0 C; P – объём газа при температуре t 0 , α p – температурный коэффициент давления,

Закон Шарля .

Давление данного количества газа при постоянном объёме линейно зависит от температуры.

График зависимости давления газа от температуры при постоянном объёме называется изохорой.

Если экстраполировать (продолжить) изохоры в область низких температур, то все они сойдутся в точке, соответствующей температуре t 0 = - 273 0 С.

4.Абсолютная термодинамическая шкала.

Английский учёный Кельвин предложил переместить начало температурной шкалы влево на 273 0 и назвать эту точку абсолютным нулём температуры. Масштаб новой шкалы такой же, как и у шкалы Цельсия. Новая шкала называется шкалой Кельвина или абсолютной термодинамической шкалой. Единица измерения – кельвин.

Нулю градусов Цельсия соответствует 273 К. Температура по шкале Кельвина обозначается буквой Т.

T = t 0 C + 273

t 0 C = T – 273

Новая шкала оказалась более удобной для записи газовых законов.

  • Температу́ра (от лат. temperatura - надлежащее смешение, нормальное состояние) - физическая величина, характеризующая термодинамическую систему и количественно выражающая интуитивное понятие о различной степени нагретости тел.

    Живые существа способны воспринимать ощущения тепла и холода непосредственно, с помощью органов чувств. Однако точное определение температуры требует, чтобы температура измерялась объективно, с помощью приборов. Такие приборы называются термометрами и измеряют так называемую эмпирическую температуру. В эмпирической шкале температур устанавливаются две реперные точки и число делений между ними - так были введены используемые ныне шкалы Цельсия, Фаренгейта и другие. Измеряемая в кельвинах абсолютная температура вводится по одной реперной точке с учётом того, что в природе существует минимальное предельное значение температуры - абсолютный нуль. Верхнее значение температуры ограничено планковской температурой.

    Если система находится в тепловом равновесии, то температура всех её частей одинакова. В противном случае в системе происходит передача энергии от более нагретых частей системы к менее нагретым, приводящая к выравниванию температур в системе, и говорят о распределении температуры в системе или скалярном поле температур. В термодинамике температура - это интенсивная термодинамическая величина.

    Наряду с термодинамическим, в других разделах физики могут вводиться и другие определения температуры. В молекулярно-кинетической теории показывается, что температура пропорциональна средней кинетической энергии частиц системы. Температура определяет распределение частиц системы по уровням энергии (см. Статистика Максвелла - Больцмана), распределение частиц по скоростям (см. Распределение Максвелла), степень ионизации вещества (см. Уравнение Саха), спектральную плотность излучения (см. Формула Планка), полную объёмную плотность излучения (см. Закон Стефана - Больцмана) и т. д. Температуру, входящую в качестве параметра в распределение Больцмана, часто называют температурой возбуждения, в распределение Максвелла - кинетической температурой, в формулу Саха - ионизационной температурой, в закон Стефана - Больцмана - радиационной температурой. Для системы, находящейся в термодинамическом равновесии, все эти параметры равны друг другу, и их называют просто температурой системы.

    В Международной системе величин (англ. International System of Quantities, ISQ) термодинамическая температура выбрана в качестве одной из семи основных физических величин системы. В Международной системе единиц (СИ), основанной на Международной системе величин, единица этой температуры - кельвин - является одной из семи основных единиц СИ. В системе СИ и на практике используется также температура Цельсия, её единицей является градус Цельсия (°С), по размеру равный кельвину. Это удобно, так как большинство климатических процессов на Земле и процессов в живой природе связаны с диапазоном от -50 до +50 °С.

Температура - это просто!

Температура

Температура - это мера средней кинетической энергии молекул.
Температура характеризует степень нагретости тел.

Прибор для измерения температуры - термометр.
Принцип действия термометра:
При измерении температуры используется зависимость изменения какого-либо макроскопического параметра (объема, давления, электрического сопротивления и т.д.) вещества от температуры.
В жидкостных термометрах - это изменение объема жидкости.
При контакте двух сред происходит передача энергии от более нагретой среды менее нагретой.
В процессе измерения температура тела и термометра приходят в состояние теплового равновесия.

Жидкостные термометры

На практике часто используются жидкостные термометры: ртутные (в диапазоне от -35 o С до +750 o С) и спиртовые (от -80 o С до +70 o С).
В них используется свойство жидкости изменять свой объем при изменении температуры.
Однако, у каждой жидкости существуют свои особенности изменения объема (расширения) при различных температурах.
В результате сравнения, например, показаний ртутного и спиртового термометров, точное совпадение будет только лишь в двух точках (при температурах 0 o С и 100 o С).
Этих недостатков лишены газовые термометры.

Газовые термометры

Первый газовый термометр был создан французским физиком Ж. Шарлем.

Преимущества газового термометра:
- используется линейная зависимость изменения объема или давления газа от температуры, которая справедлива для всех газов
- точность измерения от 0,003 o С до 0,02 o С
- интервал температур от -271 o С до +1027 o С.

Тепловое равновесие

При соприкосновении двух тел различной температуры происходит передача внутренней энергии от более нагретого тела менее нагретому, и температуры обоих тел выравниваются.
Наступает состояние теплового равновесия, при котором все макропараметры (объем, давление, температура) обоих тел остаются в дальнейшем неизменными при неизменных внешних условиях.

Тепловым равновесием называется такое состояние, при котором все макроскопические параметры остаются неизменными сколь угодно долго.
Состояние теплового равновесия системы тел характеризуется температурой: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.
Установлено, что при тепловом равновесии средние кинетические энергии поступательного движения молекул всех газов одинаковы, т.е.

Для разреженных (идеальных) газов величина

и зависит только от температуры, тогда

где k - постоянная Больцмана

Эта зависимость дает возможность ввести новую температурную шкалу абсолютную шкалу температур, не зависящую от вещества, используемого для измерения температуры.

Абсолютная шкала температур

Введена английским физиком У. Кельвином
- нет отрицательных температур

Единица абсолютной температуры в СИ: [T] = 1K (Кельвин)
Нулевая температура абсолютной шкалы - это абсолютный ноль (0К = -273 o С), самая низкая температура в природе. В настоящее время достигнута самая низкая температура - 0,0001К.
По величине 1К равен 1 o C.


Связь абсолютной шкалы со шкалой Цельсия

Запомни! В формулах абсолютная температура обозначается буквой «Т», а температура по шкале Цельсия буквой «t».

После введения абсолютной температуры получаем новые выражения для формул:

Средняя кинетическая энергия поступательного движения молекул

Давление газа - основное уравнение МКТ

Средняя квадратичная скорость молекул