» » Холодное газодинамическое напыление. Сверхзвуковое холодное газодинамическое напыление (ГДН) Холодное напыление металла

Холодное газодинамическое напыление. Сверхзвуковое холодное газодинамическое напыление (ГДН) Холодное напыление металла

Кандидаты физико-математических наук О. КЛЮЕВ и А. КАШИРИН.

Когда только появились первые металлические орудия труда, выяснилось, что, твердые и прочные, они сплошь и рядом портились под воздействием влаги. Шло время, люди создавали механизмы и машины, и чем более совершенными они становились, тем в более тяжелых условиях приходилось работать их металлическим деталям. Вибрации и знакопеременные нагрузки, огромные температуры, радиоактивное облучение, агрессивные химические среды - вот далеко не полный перечень "испытаний", которым они подвергаются. Cо временем люди научились защищать металл от коррозии, износа и других явлений, которые сокращают срок службы деталей. По сути, есть два подхода к обеспечению такой защиты: либо в основной металл добавляют легирующие элементы, которые придают сплаву искомые свойства, либо на поверхность наносят защитное покрытие. Условия работы деталей машин диктуют свойства, которыми должны обладать покрытия. Технологии их нанесения разнообразны: есть распространенные и относительно несложные, есть очень тонкие, позволяющие создавать покрытия с уникальными свойствами. А неугомонные инженеры продолжают изобретать все новые покрытия и придумывать способы их получения. Судьба этих изобретений может стать счастливой, если покрытие намного превосходит своих предшественников по полезным свойствам или если технология дает существенный экономический эффект. В разработке физиков из Обнинска соединились оба этих условия.

Летящие с огромной скоростью частицы металла при соударении с подложкой привариваются к ней, а частицы керамики уплотняют покрытие (а); на шлифе слоя металла видны застрявшие керамические частицы (б).

Схема (вверху) и общий вид (внизу) аппарата для напыления металлических покрытий.

С помощью аппарата можно наносить покрытия в любых помещениях и даже в полевых условиях.

За критическим сечением сопла возникает зона отрицательного давления, и сюда засасывается порошок. Благодаря этому явлению удалось упростить конструкцию питателя.

Дефекты в корпусных деталях (слева) и результат напыления (справа): а - трещина в автоматической коробке передач; б - каверна в головке блока цилиндра.

Покрытыми слоем меди или алюминия инструментами можно работать в пожароопасных помещениях: при ударе о металлические предметы они не дают искры.

ТЕМПЕРАТУРА ПЛЮС СКОРОСТЬ

Из способов металлизации поверхностей в современной технике чаще всего пользуются гальваническим нанесением и погружением в расплав. Реже используют вакуумное напыление, осаждение из паровой фазы и пр. Ближе всего к разработке обнинских физиков находится газотермическая металлизация, когда наносимый металл плавят, распыляют на мельчайшие капли и струей газа переносят их на подложку.

Металл плавят газовыми горелками, электрической дугой, низкотемпературной плазмой, индукторами и даже взрывчатыми веществами. Соответственно методы металлизации называют газопламенным напылением, электродуговой и высокочастотной металлизацией, плазменным и детонационно-газовым напылением.

В процессе газопламенного напыления металлический пруток, проволоку или порошок плавят и распыляют в пламени горелки, работающей на смеси кислорода с горючим газом. При электродуговой металлизации материал плавится электрической дугой. В обоих случаях капельки металла перемещаются к напыляемой подложке потоком воздуха. При плазменном напылении для нагрева и распыления материала используется струя плазмы, формируемая плазматронами разных конструкций. Детонационно-газовое напыление происходит в результате взрыва, разгоняющего металлические частицы до огромных скоростей.

Во всех случаях частицы напыляемого материала получают два вида энергии: тепловую - от источника нагрева и кинетическую - от газового потока. Оба этих вида энергии участвуют в формировании покрытия и определяют его свойства и структуру. Кинетическая энергия частиц (за исключением детонационно-газового метода) невелика по сравнению с тепловой, и характер их соединения с подложкой и между собой определяется термическими процессами: плавлением, кристаллизацией, диффузией, фазовыми превращениями и т.д. Покрытия обычно характеризуются хорошей прочностью сцепления с подложкой (адгезией) и, к сожалению, низкой однородностью, поскольку велик разброс параметров по сечению потока газа.

Покрытиям, которые создают газотермическими методами, присущ ряд недостатков. К ним относятся, прежде всего, высокая пористость, если, разумеется, не стоит цель специально сделать покрытие пористым, как в некоторых деталях радиоламп. Кроме того, из-за быстрого охлаждения металла на поверхности подложки в покрытии возникают высокие внутренние напряжения. Обрабатываемая деталь неизбежно нагревается, и если она имеет сложную форму, то ее может "повести". Наконец, использование горючих газов и высокие температуры в рабочей зоне усложняют меры по обеспечению безопасности персонала.

Несколько особняком стоит детонационно- газовый метод. При взрыве скорость частиц достигает 1000-2000 м/с. Поэтому основным фактором, определяющим качество покрытия, становится их кинетическая энергия. Покрытия отличаются высокой адгезией и низкой пористостью, но взрывными процессами крайне сложно управлять, и стабильность результато в гарантиро вать практически невозможно.

СКОРОСТЬ ПЛЮС ТЕМПЕРАТУРА

Желание создать более совершенную технологию возникло давно. Перед инженерами стояла цель - сохранить достоинства традиционных технологий и избавиться от их недостатков. Направление поиска было более или менее очевидно: во-первых, покрытия должны формироваться в основном за счет кинетической энергии частиц металла (нельзя допускать плавления частиц: это предотвратит разогрев детали и окисление подложки и частиц покрытия), и, во-вторых, частицы должны приобретать высокую скорость не за счет энергии взрыва, как в детонационно-газовом методе, а в струе сжатого газа. Такой метод назвали газодинамическим.

Первые расчеты и эксперименты показали, что создавать таким способом покрытия, обладающие вполне удовлетворительными характеристиками, можно, если использовать в качестве рабочего газа гелий. Такой выбор объяснялся тем, что скорость потока газа в сверхзвуковом соплепропорциональна скорости звука в соответствующем газе. В легких газах (водород из-за своей взрывоопасности не рассматривался) скорость звука гораздо выше, чем в азоте или воздухе. Именно гелий ускорял бы металлические частицы до высоких скоростей, сообщая им кинетическую энергию, достаточную для закрепления на мишени. Считалось, что использование более тяжелых газов, в том числе воздуха, обречено на неудачу.

Работа опытных напылительных установок дала неплохой результат: разогнавшиеся в струе гелия частицы из большинства промышленно применяемых металлов хорошо прилипали к подложке, образуя плотные покрытия.

Но полного удовлетворения инженеры не испытывали. Было понятно, что оборудование на легких газах неизбежно будет дорогим и сможет применяться лишь на предприятиях, выпускающих продукцию высоких технологий (только там есть магистрали со сжатым гелием). А магистрали со сжатым воздухом имеются практически в каждом цеху, на каждом предприятии автосервиса, в ремонтных мастерских.

Многочисленные эксперименты со сжатым воздухом вроде бы подтверждали худшие ожидания разработчиков. Однако интенсивный поиск все же позволил найти решение. Покрытия удовлетворительного качества получились, когда сжатый воздух в камере перед соплом нагрели, а в металлический порошок стали добавлять мелкодисперсную керамику или порошок твердого металла.

Дело в том, что при нагревании давление воздуха в камере в соответствии с законом Шарля повышается, а следовательно, повышается и скорость истечения из сопла. Частицы металла, набравшие в струе газа огромную скорость, при ударе о подложку размягчаются и привариваются к ней. Частицы керамики играют роль микроскопических кувалд - они передают свою кинетическую энергию нижележащим слоям, уплотняют их, снижая пористость покрытия.

Некоторые керамические частицы застревают в покрытии, другие отскакивают от него. Правда, таким способом получают покрытия только из относительно пластичных металлов - меди, алюминия, цинка, никеля и др. Впоследствии деталь можно подвергать всем известным способам механической обработки: сверлить, фрезеровать, точить, шлифовать, полировать.

ГЛАВНОЕ УСЛОВИЕ - ПРОСТОТА И НАДЕЖНОСТЬ

Старания технологов останутся втуне, если конструкторы не смогут создать простое, надежное и экономичное оборудование, в котором был бы реализован придуманный технологами процесс. Основой аппарата для напыления металлических порошков стали сверхзвуковое сопло и малогабаритный электрический нагреватель сжатого воздуха, способный доводить температуру потока до 500-600 o С.

Использование в качестве рабочего газа обычного воздуха позволило попутно решить еще одну проблему, которая стояла перед разработчиками систем на легких газах. Речь идет о введении напыляемого порошка в газовую струю. Чтобы сохранить герметичность, питатели приходилось устанавливать до критического сечения сопла, то есть порошок необходимо было подавать в область высокого давления. Чисто технические трудности усугублялись тем, что, проходя через критическое сечение, металлические частицы вызывали износ сопла, ухудшали его аэродинамические характеристики, не позволяли стабилизировать режимы нанесения покрытий. В конструкции аппарата с воздушной струей инженеры применили принцип пульверизатора, известный каждому еще из школьных опытов по физике. Когда газ проходит по каналу переменного сечения, то в узком месте его скорость увеличивается, а статическое давление падает и может даже быть ниже атмосферного. Канал, по которому порошок поступал из питателя, расположили как раз в таком месте, и порошок перемещался в сопло за счет подсоса воздуха.

В результате на свет появился переносной аппарат для нанесения металлических покрытий. Он имеет ряд достоинств, которые делают его очень полезным в различных отраслях промышленности:

для работы аппарата нужны всего лишь электросеть и воздушная магистраль или компрессор, обеспечивающий давление сжатого воздуха 5-6 атм и подачу 0,5 м 3 /мин;

при нанесении покрытий температура подложки не превышает 150 о С;

покрытия обладают высокой адгезией (40-100 Н/мм 2) и низкой пористостью (1-3%);

оборудование не выделяет вредных веществ и излучений;

габариты устройства позволяют использовать его не только в цеху, но и в полевых условиях;

можно напылять покрытия практически любой толщины.

В состав установки входят собственно напылитель массой 1,3 кг, который оператор держит в руке или закрепляет в манипуляторе, нагреватель воздуха, порошковые питатели, блок контроля и управления работой напылителя и питателя. Все это смонтировано на стойке.

Пришлось потрудиться и над созданием расходных материалов. Выпускаемые промышленностью порошки имеют слишком большие размеры частиц (порядка 100 мкм). Разработана технология, которая позволяет получать порошки с зернами размером 20-50 мкм.

ОТ КОСМИЧЕСКИХ АППАРАТОВ ДО СЕЯЛОК

Новый способ напыления металлических покрытий может применяться в самых различных отраслях промышленности. Особенно эффективен он при ремонтных работах, когда необходимо восстановить участки изделий, например, заделать трещину или раковину. Благодаря невысоким температурам процесса легко восстанавливать тонкостенные изделия, отремонтировать которые другим способом, например наплавкой, невозможно.

Поскольку зона напыления имеет четкие границы, напыляемый металл не попадает на бездефектные участки, а это очень важно при ремонте деталей сложной формы, например корпусов коробок передач, блоков цилиндров двигателей и др.

Устройства для напыления уже применяют в авиакосмической и электротехнической промышленности, на объектах атомной энергетики и в сельском хозяйстве, на авторемонтных предприятиях и в литейном производстве.

Метод может оказаться весьма полезным во многих случаях. Вот лишь некоторые из них.

Восстановление изношенных или поврежденных участков поверхностей. С помощью напыления восстанавливают поврежденные в процессе эксплуатации детали редукторов, насосов, компрессоров, форм для литья по выплавляемым моделям, пресс-форм для изготовления пластиковой упаковки. Новый метод стал большим подспорьем для работников авторемонтных предприятий. Теперь буквально "на коленках" они заделывают трещины в блоках цилиндров, глушителях и пр. Без особых проблем устраняют дефекты (каверны, свищи) в алюминиевом литье.

Устранение течей. Низкая газопроницаемость покрытий позволяет ликвидировать течи в трубопроводах и сосудах, когда нельзя использовать герметизирующие компаунды. Технология пригодна для ремонта емкостей, работающих под давлением или при высоких и низких температурах: теплообменников, радиаторов автомобилей, кондиционеров.

Нанесение электропроводящих покрытий. Напылением удается наносить медные и алюминиевые пленки на металлическую или керамическую поверхность. В частности, метод экономически более эффективен, чем традиционные способы, при меднении токоведущих шин, цинковании контактных площадок на элементах заземления и т. п.

Антикоррозионная защита. Пленки из алюминия и цинка защищают поверхности от коррозии лучше, чем лакокрасочные и многие другие металлические покрытия. Невысокая производительность установки не позволяет обрабатывать большие поверхности, а вот защищать такие уязвимые элементы, как сварные швы, очень удобно. С помощью напыления цинка или алюминия удается приостановить коррозию в местах появления "жучков" на крашеных поверхностях кузовов автомобилей.

Восстановление подшипников скольжения. В подшипниках скольжения обычно применяют баббитовые вкладыши. С течением времени они изнашиваются, зазор между валом и втулкой увеличивается и слой смазки нарушается. Традиционная технология ремонта требует либо замены вкладыша, либо заварки дефектов. А напыление позволяет восстановить вкладыши. В этом случае для уплотнения слоя напыляемого металла керамику применять нельзя. Твердые включения через считанные минуты после начала работы выведут подшипник из строя, причем поврежденными окажутся поверхности и втулки и вала. Пришлось применить сопло особой конструкции. Оно позволяет наносить покрытие из чистого баббита в так называемом термокинетическом режиме. Частицы порошка сразу за критическим сечением сопла разгоняются сверхзвуковым потоком воздуха, затем скорость потока резко снижается до околозвуковой. В результате резко возрастает температура, и частицы нагреваются почти до температуры плавления. При попадании на поверхность они деформируются, частично плавятся и хорошо прилипают к ниже лежащему слою.

СПЕЦИАЛИСТУ - НА ЗАМЕТКУ

Литература

Каширин А. И., Клюев О. Ф., Буздыгар Т. В. Устройство для газодинамического нанесения покрытий из порошковых материалов. Патент РФ на изобретение № 2100474. 1996, МКИ6 С 23 С 4/00, опубл. 27.12.97. Бюл.№ 36.

Каширин А. И., Клюев О. Ф., Шкодкин А. В. Способ получения покрытий. Патент РФ на изобретение № 2183695. 2000, МКИ7 С 23 С 24/04, опубл. 20.06.02. Бюл. № 17.

Координаты разработчиков и условия приобретения их технологий или изделий можно узнать в редакции.

Холодное газодинамическое напыление - новейший метод в области термического напыления. По сравнению с обычными процессами термического напыления холодное газодинамическое напыление имеет особые преимущества, поскольку распыляемый материал не расплавляется и не плавится во время процесса. Таким образом, тепловое воздействие на покрытие и материал подложки остается низким.

Высокая кинетическая энергия частиц и высокая степень деформации при воздействии на подложку, которая связана с ней, позволяет изготавливать однородные и очень плотные покрытия. Диапазон толщины покрытия варьируется от нескольких сотых долей миллиметра до нескольких сантиметров.

В получаемых металлических покрытиях, физические и химические свойства практически не отличаются от свойств базового материала.

Согласно новейшей системной технологии компании «Impact Innovations GmbH» инертный газ - предпочтительно азот или гелий - подается в пистолет-распылитель под давлением до 50 бар (725 фунтов на кв. дюйм) и нагревается до максимальной температуры 1100 °C (2012 °F) в корпусе пистолета.

Последующее расширение нагретого и находящегося под высоким давлением газа в сужающемся-расширяющемся сопле до давления окружающей среды приводит к ускорению технологического инертного газа до сверхзвуковой скорости и в то же время к охлаждению газа до температуры ниже 100 °C (373 °F).

Распыляемые порошки впрыскиваются в сужающуюся часть сопла с помощью устройства подачи порошка и газа-носителя и ускоряются до скорости частиц 1200 м/с в основном газовом потоке.

В сильно суженом сопле распылителя частицы ударяются о необработанные, в большинстве случаев, поверхности компонентов, деформируются и превращаются в сильно адгезионное/когезионное и низкооксидное покрытие.

Воздействие скорости частиц на качество и эффективность покрытия

  1. Частица покрытия достигла минимальной скорости удара, которая необходима для возбуждения механизма взаимодействия с поверхностью подложки (обрабатываемого образца). Эта так называемая «критическая скорость» влияет на свойства материала покрытия.
  2. Поскольку скорость удара выше критической скорости, деформация и качество сцепления частиц возрастают.
  3. Если скорость удара слишком высока («скорость эрозии»), происходит больше разрушения материала, чем его добавления. Покрытие не образуется.
  4. Чтобы образовалось плотное и хорошо сформированное покрытие, значение скорости удара частиц должно быть между значениями критической скорости и скорости эрозии.

Что может быть покрыто методом холодного газодинамического напыления?


Материалы для покрытия

Металлы: например, магний, алюминий, титан, никель, медь, тантал, ниобий, серебро, золото и др.

Сплавы: например, никель-хром, бронза, алюминиевые сплавы, латунь, титановые сплавы, порошки из MCrAlY (сплавы на основе базового металла (Co, Ni, Cr, Fe) с добавлением хрома, алюминия и иттрия) и др.

Смешанные материалы (металлическая матрица в сочетании с твердыми фазами): например, металл и керамика, композиты.

Материалы основы

Металлические изделия и образцы, пластмасса, а также стекло и керамика.

Индивидуальная обработка

Каждый отдельный материал обрабатывается индивидуально.

Обработка материалов требует индивидуальной регулировки температуры и давления газа. Комбинация этих двух физических параметров определяет скорость частиц и качество покрытия. Диапазон оптимальной скорости распыления, ограниченный критической скоростью и скоростью эрозии, называется диапазоном осаждения. В рамках этого диапазона на качество нанесения покрытий влияют параметры.

Процесс газодинамического напыления представляет собой закрепление частиц металла на металлических, стеклянных, керамических или бетонных изделиях в момент соударения газопорошковой смести с внешней поверхностью-подложкой. Происходит это благодаря предварительному ускорению этих частиц в сопле для сверхзвукового разгона частиц, при этом температура разгоняемых металлических частиц не превышает температуру их плавления. Металлический слой, нанесенный на изделие по методу холодного газодинамического напыления, отличается качественной сцепкой с поверхностью основы и устойчив к механическим повреждениям.

История открытия явления и факты, обнаруженные опытным путем

Тот факт, что для образования металлического покрытия на поверхности-подложке нет необходимости доводить металлические частицы до состояния плавления или близкого к нему, как это обычно происходит при использовании стандартных методик напыления, был обнаружен в конце ХХ века российскими учеными. Результаты ряда экспериментов, проводимых научными сотрудниками РАН, показали, что поверхностное напыление можно получать и при нагреве твердых металлических частиц до температуры, которая гораздо ниже температуры их плавления.

Кроме того, в ходе экспериментов были зафиксированы следующие важные факты:

  • главным параметром в технологии холодного газодинамического напыления, от которого зависит качество адгезии, является скорость разгона газопорошковой смеси. Именно этот параметр влияет на степень сцепки напыления с поверхностью, на которую оно наносится, а также на такие характеристики напыляемого слоя, как пористость и механическая прочность. При скорости твердых частиц выше 500-600 м/с эрозийные процессы трансформируются в прочный слой напыления;
  • эмпирическим путем был обнаружен критический предел расхода частиц, при котором металлический слой не образуется при любой длительности воздействия газопорошкового потока на подложку;
  • если расход порошка превышает критическую величину, то происходит крепкое и надежное сцепление частиц на напыляемой поверхности, и образуется плотный напыляемый слой;
  • из всего объема твердых частиц, разгоняемых сверхзвуковым потоком, только небольшое количество образует слой поверхностного напыления. Основная масса частиц распыляется и не имеет возможности закрепиться на обрабатываемой поверхности. Соответственно, количество металлических частиц, наносимых и фиксирующихся на изделии, напрямую зависит от объема расходуемого порошкового материала;
  • поверхность подложки в процессе формирования слоя напыления нагревается незначительно.Температура поверхности, обтекаемой потоком газа и подложки, которая находится в процессе газодинамического напыления, отличается друг от друга примерно на 45 градусов.

Виды холодного газодинамического напыления и их преимущества

Холодное газодинамическое напыление имеет 2 вида:

  1. Напыление высокого давления, при котором используется гелий, азот или смесь газов. Расход порошкового материала составляет 4,5-13,5 кг/ч.
  2. Холодное газодинамическое напыление низкого давления, осуществляемое при помощи сжатого воздуха. Объем расходуемого порошка колеблется в пределах 0,3-3 кг/ч.

Оба вида напыления имеют свои преимущества и недостатки:

  • при использовании в технологическом процессе высокого давления покрытие получается более качественным, при том, что размер твердых частиц металлического порошка может варьироваться от 5 до 50 мкм, а не в пределах 5-30 мкм, как в технологии со сжатым воздухом;
  • в технологическом процессе напыления низкого давления используется менее габаритное оборудование, стоимость которого значительно ниже того, что используется для напыления под высоким давлением.

Технологический процесс напыления высокого и низкого давления

В процессе холодного напыления высокого давления газ нагревается и соединяется с твердыми частицами порошкового материала. Эта газопорошковая смесь поступает в сверхзвуковое сопло, разгоняется там до сверхзвуковой скорости и под давлением 7-40 бар направляется на поверхность изделия, на котором необходимо образовать металлическое покрытие.

Холодное напыление, при котором используется сжатый воздух, технологически отличается от метода напыления под высоким давлением тем, что основные процессы происходят сразу в сопле для разгона частиц до сверхзвуковой скорости: газ нагревается непосредственно в нем, а порошок поступает в сопло перпендикулярно газовому потоку. Кроме того, при использовании метода напыления с низким давлением используются порошки, в которых кроме частиц металла присутствуют керамические частицы. Такие добавки улучшают состояние поверхности изделия, на которое наносится напыление, и повышают качество адгезии материалов. Кроме того, в процессе прохождения потока смеси через оборудование керамические частицы дополнительно очищают стенки и выходное отверстие сопла.

Область применения холодного газодинамического напыления

Холодное газодинамическое покрытие применяется для решения следующих задач:

  • реставрация металлических деталей, которые были подвержены сколам, трещинам, истиранию и другим механическим повреждениям;
  • покрытие металлических изделий напылением с целью увеличения их антикоррозийных и теплопроводных свойств;
  • защита контактных поверхностей наконечников металлических кабелей.

Роботы Kawasaki применяют в комплексах напыления по технологии ДИМЕТ. Эта технология позволяет наносить металлический слой на различные поверхности: металл, стекло, керамика, камень. Особенностью технологии является возможность нанесения металлического порошка на несовместимые для сварки и пайки металлы. Например, удается эффективно наносить медь на алюминий, что представляет большую ценность для электротехнического производства.

О технолигии

Технология газодинамического напыления порошкового металла и преобразования его в монолитное покрытие реализуется на оборудовании ДИМЕТ выпускаемом Обнинским Центром Порошкового Напыления. Покрытия формируются на любой твердой поверхности, такой, как металл, стекло, керамика, камень. Материал покрытия выбирается при решении конкретной производственной или творческой задачи, поскольку решение может быть получено с помощью разного типа порошковых материалов.

Сжатый воздух (5-8 атм) нагревается (300-600°C) и подается в сопло, где формируется сверхзвуковой поток:

  • в этот поток вводятся порошки, содержащие металлические и керамические частицы
  • частицы ускоряются газовым потоком до скорости несколько сот метров в секунду и в нерасплавленном состоянии направляются на подложку
  • при ударе о подложку кинетическая энергия частиц преобразуется в тепло, а затем в энергию связи частиц с подложкой
  • в результате таких высокоскоростных ударов частицы закрепляются на подложке и формируют плотное покрытие.

Основные процессы, определяющие сцепление частиц с подложкой и друг с другом:

  1. Тесное соприкосновение кристаллических решеток частиц и подложки (или разных частиц) до образования металлических связей, по крайней мере, на отдельных участках пятна контакта. При этом нигде не происходит плавления частицы или подложки. Этот механизм сцепления аналогичен механизму сцепления при сварке взрывом.
  2. На отдельных выступах и неровностях падающих частиц может происходить их плавление и осуществляться точечная микросварка.
  3. При тесном соприкосновении ювенильных поверхностей разнородных материалов может проявляться межмолекулярное взаимодействие этих материалов. Типичным примером такого механизма является напыление зеркального алюминиевого покрытия на стекло.
  4. Определенную роль может играть механическое сцепление при условии глубокого проникновения частиц в подложку. Конкретное соотношение относительной роли различных механизмов сцепления в различных случаях может существенно отличаться друг от друга и является предметом отдельного исследования.

Области применения

Отрасль Применение Покрытия

Литейное производство

Ремонт дефектов литьевых деталей

Под давлением

В кокиль

По выплавляемым моделям

Покрытия для восстановления формы и размеров деталей.

Герметизирующие покрытия

(низкая газопроницаемость)

Металлургическое производство

Снижение электросопротивления контактов электролизёров

Защита от высокотемпературной коррозии

Электропроводящие покрытия

Жаростойкие покрытия

Автомобилестроение

Ремонт литых деталей

Герметизирующие покрытия

Антикоррозионные покрытия

Покрытия при ремонте механических повреждений ГБЦ, БЦ, агрегатов

Герметизация трещин ГБЦ, БЦ, радиаторов, трубопроводов, кондиционеров

Защита от коррозии локальных очагов

Восстановление формы кузовных деталей из алюминия без шпатлевки

Герметизирующие покрытия

Антикоррозионные покрытия

Авиастроение, авиаремонт

Ремонт литьевых и производственных дефектов алюминиевых деталей

Покрытия для восстановления формы и размеров деталей.

Герметизирующие покрытия

Ракетная и космическая техника

Специальное

Покрытия для герметизации изделий из термоупрочненного алюминия

Теплоизлучающие покрытия

Судостроение, судоремонт

Протекторная защита сварных швов

Восстановление посадочных мест подшипников

Покрытия для восстановления формы и размеров деталей

Антикоррозионные покрытия

Герметизирующие покрытия

Нефтегазовая промышленность

Восстановление геометрии деталей газоперекачивающих агрегатов

Предотвращение от схватывания высоконагруженных резьбовых соединений

Восстановление подшипников скольжения

Покрытия для восстановления формы и размеров деталей

Антисхватывающие покрытия

Антифрикционные

Электротехническое производство

Металлизация электроконтактных площадок

Нанесение электропроводных гальванически совместимых покрытий

Металлизация для теплопередачи

Подслои по алюминию и стекло под пайку

Электропроводящие покрытия

Инструментальное производство

Восстановление форм для пластиковой и стеклянной упаковки

Восстановление форм для прессования резиновых изделий

Восстановление оснастки для прессовки деталей из прессматериалов (АГ4, ДСВ, карболит)

Изготовление искрозащищенного инструмента

Покрытия для восстановления формы и размеров деталей

Искробезопасные покрытия

Реставрация памятников и скульптур

Восстановление утраченных элементов памятников. Защита от коррозии

Покрытия для восстановления формы и размеров деталей

Антикоррозионные покрытия

Реализованный проект

Роботизированный комплекс покрытия контактных поверхностей токопроводящих шин, которые используются в токамак-реакторе проекта ИТЭР. Разработчик комплекса — ООО "Актон" (партнер и системный интегратор Robowizard).

Схема комплекса:

Решенная задача:

Напыление двухслойного медного покрытия на плоские электроконтактные поверхности алюминиевых токопроводящих шин. Площадка напыления — до 0,5м 2 , сами шины достигают длины 12 метров и массы 4 тонны.

Состав комплекса:

  1. ПЛК Овен;
  2. Робот Kawasaki RS006L;
  3. Камера напыления;
  4. Контроллер E01;

Реализованный комплекс дает возможность выполнения следующих задач:

  • исполнение технологического процесса с функцией программного контроля и управления параметрами;
  • движение напылителя по заданной траектории, синхронизирующееся с работой технологического оборудования, посредством передачи информационных сообщений;
  • визуализация параметров технологического процесса на сенсорном экране оператора, а также средства изменения режимов работы, организованные на базе элементов диалоговых окон.

Если у вас есть потребность в подобном решении — оставьте свои контактные данные в форме заявки. Наши специалисты проконсультируют вас и оговорят детали сотрудничества.

Галерея проекта

Схема сотрудничества

Газодинамическое напыление металла: цель, назначение, разновидности технологии. Преимущества и недостатки метода. Область применения. Оборудование и особенности применения холодного напыления.

Газодинамическое напыление металла выполняется с целью придания поверхностям металлических и неметаллических изделий необходимых свойств. Это может быть повышение электро- и теплопроводности, прочности, защита от воздействия коррозионных процессов, восстановление геометрических размеров и т. д. При этом в зависимости от конкретной задачи, зависящей от металла изделия, подбирается необходимое оборудование, расходные материалы и технология выполнения напыления. Чаще всего поверхности подлежат металлизации, при этом наносимое покрытие имеет высокую адгезию с материалом, на которую оно наносится, а изделие получается механически прочным. Напыляться могут чисто металлические порошки или смеси, в состав которых, помимо металлической составляющей, вводится керамический порошок в определенных количествах. Это значительно удешевляет технологию получения порошкового покрытия и не сказывается на его свойствах.

Сущность метода холодного газодинамического напыления заключается в нанесении и закреплении на поверхности изделия или детали твердых частиц металла или смеси материалов размером от 0,01 до 50 мкм, разогнанных до необходимой скорости в воздухе, азоте или гелии. Такой материал называют порошковым. Это частицы алюминия, олова, никеля, баббиты разных марок, смесь алюминиевого порошка с цинком. Среда, с помощью которой осуществляют перемещение материала, может быть холодной или подогреваться до температуры не выше 700 °C.

При контакте с поверхностью изделия происходит трансформация пластического типа, а энергия кинематического вида переходит в адгезионную и тепловую, что способствует получению прочного поверхностного слоя металла. Порошок может наноситься не только на металлические поверхности, но и на выполненные из бетона, стекла, керамики, камня, что значительно расширяет область применения способа создания поверхностей с особыми свойствами.


В зависимости от давления различают такие виды холодного газодинамического напыления:
  • высокого;
  • низкого.

В первом случае в качестве рабочей среды, перемещающей порошковый материал размером от 5 до 50 мк, используют гелий и азот. Частицы металла, если они движутся, имеют давление больше 15 атм. Во втором случае используется сжатый воздух, который подается под давлением, не превышающим 10 атм. Различаются эти виды еще и такими показателями, как мощность подогрева и расход рабочей среды.

Этапы напыления следующие:

  • подготовка поверхности изделия к напылению механическим или абразивным способом;
  • нагревание рабочей среды (воздух, азот, гелий) до установленной в технологическом процессе температуры;
  • подача нагретого газа в сопло оборудования вместе с порошком под необходимым давлением.

В результате порошок разгоняется в потоке до сверхзвуковых скоростей и соударяется с поверхностью детали или изделия. Происходит напыление слоя металла толщиной, величина которой зависит от температуры нагрева подаваемого газа и давления.

Подготовку поверхности изделия абразивным способом выполняют, применяя само оборудование для нанесения газодинамического напыления простой сменой параметров режима.

Область применения этого вида напыления довольно обширная. С помощью метода осуществляют герметизацию течей в емкостях и трубопроводах, ремонт деталей и отливок из легких сплавов, наносят электропроводящие, антикоррозионные и антифрикционные покрытия, устраняют механические повреждения, восстанавливают посадочные места в подшипниках.

Главные плюсы метода

К преимуществам технологии относят:
  • выполнение работ при любых климатических условиях (давлении, температуре, влажности);
  • возможность применения оборудования стационарного и переносного типа, что в последнем случае позволяет осуществлять работы по месту их проведения;
  • возможность нанесения покрытия на локальные участки (дефектные места);
  • возможность создания слоев с разными свойствами;
  • возможность создания слоя необходимой толщины или разных по толщине в многослойных покрытиях;
  • процесс не оказывает влияния на структуру изделия, на которое наносится напыление, что является важным преимуществом;
  • безопасность;
  • экологичность.

К недостатку этого вида напыления относят только один факт. Слои можно наносить на пластичные металлы, такие как медь, цинк, алюминий, никель и сплавы на их основе.

Производители разных стран выпускают оборудование стационарного и переносного типа для ручного и автоматизированного нанесения покрытий разной производительности на разные металлы.

Применяемое оборудование

Аппарат газодинамического напыления металла состоит из таких основных частей:
  • емкости для порошка;
  • системы подачи рабочей среды, включая баллон для сжатого газа и все необходимые комплектующие к нему;
  • сопла (как правило, их несколько, они разной конфигурации и применяются для разных режимов напыления);
  • пульта управления.
В РФ качественное оборудование для напыления газодинамическим способом выпускает центр порошкового напыления в Обнинске под товарным знаком «ДИМЕТ». Оно соответствует требованиям отечественных ГОСТов, сертифицировано и защищено патентами во многих странах, включая Россию.

Процесс ремонта детали газодинамическим напылением показан на видео: